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Mini-Quiz 6

1. Write your name:

2. (Rosen, Sec. 2.6, Ex. 29) Let

A =

 1 0 1
1 1 0
0 0 1


B =

 0 1 1
1 0 1
1 0 1


Find the following:

(a) A ∨B
(b) A ∧B
(c) A�B

Solution:

(a) A ∨B:  1 1 1
1 1 1
1 0 1


(b) A ∧B:  0 0 1

1 0 0
0 0 1


(c) A�B:

Note that � means boolean product. Use matrix multiplication, but cap the
values at one: 1 + 1 = 1 · 1 = 1  1 1 1

1 1 1
1 0 1
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Tutorial 6 Problems

Problem 1 Is a Harvard degree really worth more than an MIT degree?! Let us say that
a person with a Harvard degree starts with $40,000 and gets a $20,000 raise every year after
graduation, whereas a person with an MIT degree starts with $30,000, but gets a 20% raise
every year. Assume inflation is a fixed 8% every year. That is, $1.08 a year from now is
worth $1.00 today. (You’ll need a calculator to get final answers; if one is not available, it’s
ok to express the answer as a closed form numerical expression.)

(a) How much will a person with a Harvard degree be making in the nth year?

Solution:

40000 + 20000(n− 1)

Note that in the nth year, you have not yet gotten the nth raise. You should always check
your boundary cases – in this case, the salary in the first year.

(b) How much will a person with an MIT degree be making in the nth year?

Solution:

30000(1.2n−1)

(c) How much is a Harvard degree worth today if the holder will work for n years following
graduation? Hint : In Lecture 8 a closed formula for

∑n
i=0 ir

i was derived.

Solution:

One dollar after year i is worth ri in today’s currency, where

r =
1

1.08
= 0.925 925 925 . . . .
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So

Hvdn =
n−1∑
i=0

(40000 + 20000i)ri

= 40000
n−1∑
i=0

ri + 20000
n−1∑
i=0

iri.

But we know from Lecture Notes 8 that
n∑
i=0

iri =
r − (n+ 1)rn+1 + nrn+2

(1− r)2
,

so

Hvdn = 40000
(1− rn)

1− r
+ 20000

(r − nrn + (n− 1)rn+1)

(1− r)2
,

and for n = 20,

Hvd20 = $1, 916, 483.

(As indicated in the first two parts, we have avoided counting the n + 1 year, in which we
do not actually work. We also could have started with:

Hvdn =
n∑
i=1

(salary-in-ith-year) · (inflation-adj-for-ith-year)

=
n∑
i=1

(40000 + 20000(i− 1))ri−1

=
n−1∑
i=0

(40000 + 20000i)ri

which is equivalent. A good thing to check for here, besides the boundary cases, is the
number of items you are summing. If the summation were from 0 to n, that would be n+ 1
years – clearly a mistake.)

(d) How much is an MIT degree worth in this case?

Solution:

MITn = 30000
n−1∑
i=0

1.2iri

= 30000
n−1∑
i=0

(1.2r)i

=
30000(1− (1.2r)n)

1− 1.2r
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and for n = 20,

MIT20 =
30000(1− (1.2r)20)

1− 1.2r
= $1, 950, 821.

(e) If you plan to retire after twenty years, which degree would be worth more?

Solution:

The MIT degree is more valuable – as if you couldn’t guess :-) – but only by about 2%. But
if you were persistent enough to work 30 years, you would find the MIT degree was worth
more than twice as much.
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Problem 2 There are “sum” and “difference” operators that play the same role in discrete
math as integral and derivative operators place in calculus. In particular, the difference
operator ∆ is defined by

∆f(x) = f(x+ 1)− f(x)

and the summation operator

b∑
a

g(x)δx =
b−1∑
x=a

g(x)

This sum operator is a bit annoying, as many sloppy mathematicians will use the left hand
side to denote a sum up to b, rather than b− 1. But let’s work with it for today.

(a) Suppose that g(x) = ∆f(x). Prove that

b∑
a

g(x)δx = f(b)− f(a)

Solution:
Loosely,

b∑
a

g(x)δx =
b−1∑
x=a

g(x)

=
b−1∑
x=a

[f(x+ 1) − f(x)]

=
b−1∑
x=a

f(x+ 1) −
b−1∑
x=a

f(x)

=
b∑

x=a+1

f(x) −
b−1∑
x=a

f(x)

= f(b) +
b−1∑

x=a+1

f(x) −
b−1∑

x=a+1

f(x) − f(a)

= f(b) − f(a)

A more formal proof can be done using induction. Note, however, that using induction does
not help if you cannot guess the correct formula. Manipulating the summations will give
you a feel for that.

Fix arbitrary a, and induct over the values of b. Take as the base case b = a, for which the
given equation trivially holds – there are no terms in the summation, and f(a)− f(a) = 0.
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Now, assuming
∑b

a g(x)δx = f(b)− f(a), prove
∑b+1

a g(x)δx = f(b+ 1)− f(a).

b+1∑
a

g(x)δx =
b∑
a

g(x)

= g(b) +
b−1∑
a

g(x)

= g(b) +
b∑
a

g(x)δx

= g(b) + f(b) − f(a) (IH)

= ∆f(b) + f(b) − f(a)

= f(b+ 1) − f(b) + f(b) − f(a)

= f(b+ 1) − f(a)

(b) Suppose that h(n) =
∑n

k=0 f(k). What is ∆h(n)?

Solution:

∆h(n) = h(n+ 1) − h(n)

=
n+1∑
k=0

f(k) −
n∑
k=0

f(k)

= f(n+ 1) +
n∑
k=0

f(k) −
n∑
k=0

f(k)

= f(n+ 1)

(c) Prove that

∆(u(x)v(x)) = u(x)∆v(x) + v(x+ 1)∆u(x)

Solution:
We can work left to right and make it look like magic, introducing a zero-sum pair out of
the void. Or we can work right to left:

u(x)∆v(x) + v(x+ 1)∆u(x) = u(x) (v(x+ 1) − v(x)) + v(x+ 1) (u(x+ 1) − u(x))

= u(x)v(x+ 1) − u(x)v(x) + v(x+ 1)u(x+ 1) − v(x+ 1)u(x)

= v(x+ 1)u(x+ 1) − u(x)v(x)

= δ(u(x)v(x))
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(d) The falling power function is defined by the equation

xm = x(x− 1) · · · (x−m+ 2)(x−m+ 1).

In other words, just like xm, it is a product of m terms, but they fall away from x. Prove

∆xm = mxm−1

Solution:

∆xm = (x+ 1)m − xm

= (x+ 1)(x)(x− 1) · · · (x−m + 2)

− (x)(x− 1) · · · (x−m + 2)(x−m+ 1)

= (x+ 1)xm−1 − (x−m+ 1)xm−1

= mxm−1

(e) Find the value of

b∑
x=a

xm

Solution:
We can use

δxm = mxm−1 → xm =
1

m+ 1
∆xm+1
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b∑
x=a

xm =
b∑

x=a

1

m+ 1
∆xm+1

=
1

m+ 1

b∑
x=a

∆xm+1

=
1

m+ 1

b∑
x=a

[
(x+ 1)m+1 − xm+1

]
=

1

m+ 1

[
b∑

x=a

(x+ 1)m+1 −
b∑

x=a

xm+1

]

=
1

m+ 1

[
b+1∑

x=a+1

xm+1 −
b∑

x=a

xm+1

]

=
1

m+ 1

[
(b+ 1)m+1 +

b∑
x=a+1

xm+1 − am+1 −
b∑

x=a+1

xm+1

]

=
(b+ 1)m+1 − am+1

m+ 1



8 Handout 22: Tutorial 6 Problems

Problem 3 Consider the Strong Caching system given in lecture as a labeled state machine:

Caching system (strong)

The system is composed of a main memory store that is accessed by two ’clients’. Each client
accesses the memory through a cache. When the memory is updated, the caches are cleaned out.

State machine:

• Q: For every x ∈ addresses:

– memory(x ), an element of data

– cache1 (x ), an element of data ∪ {null}
– cache2 (x ), an element of data ∪ {null}

And a number of doubled structures (one for each client/cache):

– req1 , an element of {“read′′, “write′′} ∪ {null}
– reqaddr1 , an element of addresses ∪ {null} (used for both reads and writes)

– reqval1 , an element of data ∪ {null} (used for writes only)

– ret1 , an element of {“OK ′′,null} ∪ data

– req2 , an element of {“read′′, “write′′} ∪ {null}
– reqaddr2 , an element of addresses ∪ {null} (used for both reads and writes)

– reqval2 , an element of data ∪ {null} (used for writes only)

– ret2 , an element of {“OK ′′,null} ∪ data

• Q0: memory arbitrary, caches all null , all other components null .

• L: All are for i ∈ {1, 2} (each client). Note that, for each label, the italicized text is just a
description of the intended purpose.

Input labels:

req-readi(x), x ∈ addresses
an input from client i requesting to read the value in address x from cachei .
req-writei(x, v), x ∈ addresses, v ∈ data
a request by client i to write value v in location x in memory (not cache).

Internal labels:

comp-readi(x), x ∈ addresses
actually performed the read that was requested and stored the result.
comp-writei(x, v), x ∈ addresses, v ∈ data
actually performed the write that was requested.
copyi(x), x ∈ addresses
copied the value at x from memory into cachei.
dropi(x), x ∈ addresses
dropped the value at x from cachei.
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Output labels:

ret-readi(v), v ∈ data
signal result of a read request and computation for the value at x.
ret-writei(“OK ′′)
signal completion of a write request and computation.

• δ:

req-readi(x)
Can occur anytime
if reqi = null then

reqi := “read′′

reqaddri := x

req-writei(x, v)
Can occur anytime
if reqi = null then

reqi := “write′′

reqaddri := x
reqvali := v

ret-readi(v)
Can occur if retvali ∈ values

reqi :=null
reqaddri := null
reqvali :=null
retvali := null

ret-writei(“OK ′′)
Can occur if retvali = “OK ′′

reqi :=null
reqaddri := null
reqvali :=null
retvali := null

comp-readi(x)
Can occur if reqi = “read′′, reqaddri = x, cachei(x) 6= null , and retvali = null

retvali := cachei(x)

comp-writei(x, v)
Can occur if reqi = “write′′, reqaddri = x, reqvali(x) = v, and retvali = null

memory(x) := v
retvali := “OK ′′

cache1 (x) := null
cache2 (x) := null

copyi(x)
Can occur anytime

cachei(x) := memory(x)

dropi(x)
Can occur anytime

cachei(x) := null
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Also consider a simple Centralized Memory system as a labeled state machine:

Centralized memory system

The system is composed of a main memory store that is accessed by two ’clients’. Each client
accesses the memory directly.

State machine:

• Q: For every x ∈ addresses:

– memory(x ), an element of data

And a number of doubled structures (one for each client):

– req1 , an element of {“read′′, “write′′} ∪ {null}

– reqaddr1 , an element of addresses ∪ {null} (used for both reads and writes)

– reqval1 , an element of data ∪ {null} (used for writes only)

– ret1 , an element of {“OK ′′,null} ∪ data

– req2 , an element of {“read′′, “write′′} ∪ {null}

– reqaddr2 , an element of addresses ∪ {null} (used for both reads and writes)

– reqval2 , an element of data ∪ {null} (used for writes only)

– ret2 , an element of {“OK ′′,null} ∪ data

• Q0: memory arbitrary, all other components null .

• L: All are for i ∈ {1, 2} (each client). Note that, for each label, the italicized text is just a
description of the intended purpose.

Input labels:

req-readi(x), x ∈ addresses
an input from client i requesting to read the value in address x from memory.
req-writei(x, v), x ∈ addresses, v ∈ data
a request by client i to write value v in location x in memory.

Internal labels:

comp-readi(x), x ∈ addresses
actually performed the read that was requested and stored the result.
comp-writei(x, v), x ∈ addresses, v ∈ data
actually performed the write that was requested.

Output labels:

ret-readi(v), v ∈ data
signal result of a read request and computation for the value at x.
ret-writei(“OK ′′)
signal completion of a write request and computation.
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• δ:

req-readi(x)
Can occur anytime
if reqi = null then

reqi := “read′′

reqaddri := x

req-writei(x, v)
Can occur anytime
if reqi = null then

reqi := “write′′

reqaddri := x
reqvali := v

ret-readi(v)
Can occur if retvali ∈ values

reqi :=null
reqaddri := null
reqvali :=null
retvali := null

ret-writei(“OK ′′)
Can occur if retvali = “OK ′′

reqi :=null
reqaddri := null
reqvali :=null
retvali := null

comp-readi(x)
Can occur if reqi = “read′′, reqaddri = x, and retvali = null

retvali := memory(x)

comp-writei(x, v)
Can occur if reqi = “write′′, reqaddri = x, reqvali(x) = v, and retvali = null

memory(x) := v
retvali := “OK ′′

(a) Try to prove, as carefully as you can, that the strong caching system labeled state
machine in fact implements the centralized memory labeled state machine.

This proof can be done using ad hoc methods, starting from any execution of the caching
system and constructing the (possibly infinite) execution of the centralized memory machine.
The construction can proceed by structural induction on the definition of the execution of
the caching system.

TA note:

Try to show them the Abstraction Theorem and show how the proof could be made very
systematic using this theorem.



12 Handout 22: Tutorial 6 Problems

Give them direction here, depending on what the individual sections and groups need. They
should explore the abstraction issues. Interrupt them once or twice to have them present
their ideas so far, so that no group gets too lost.

You may want to draw pictures of the two systems at the start, and make sure that everyone
knows what the problem is.

Later, stop them at some point and make sure that they all understand the technique of
showing that every trace of SC can be produced by some execution of CM that will leave
the two states related by some (trivial) abstraction function.

Valid traces, with data as letters and addresses as integers:

q0 = all memory set to ‘a’.

1. req-write1(7, ‘f ′)

2. ret-write1(“OK ′′)

3. req-read1(7)

4. ret-read1(‘f ′)

q0 = all memory set to ‘a’.

1. req-write1(9, ‘x′)

2. req-write2(9, ‘y′)

3. ret-write2(“OK ′′)

4. req-read2(9)

5. ret-read2(‘y′)

6. ret-write1(“OK ′′)

7. req-read1(9)

8. ret-read1(‘x′)

q0 = all memory set to ‘a’.

1. req-write1(4, ‘x′)

2. req-write1(4, ‘y′)

3. req-read1(4)

4. ret-write1(“OK ′′)

5. req-read1(4)

6. ret-read2(8)

7. ret-read1(‘x′)

8. ret-read2(‘a′)

It is helpful to figure out what sequences of transitions could have created the above traces,
for both SC and CM machines. In other words, where are the hidden internal labels? For
starters, remember that the SC machine would have to do a copy to a cache before doing a
comp-read, while the CM machine could just do a comp-read.
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Solutions and Discussion:

To sketch out the proof, we want to show that any trace of SC is a trace of CM. In other
words, any execution α of SC has a corresponding execution β in CM that produces the
same externally visible (input and output) labels.

trace(α) = trace(β)

We can show this by induction on the length of α (the number of transitions in that execu-
tion). We must first strengthen our hypothesis to include a relation between the states of
SC and CM – otherwise, we will not have enough to go on to do the induction. This relation
is the abstraction relation. Try the relation that memory in SC is identical to memory in
CM.

So, take P (n): For any execution α of SC of length n, there is an execution β of CM that
has the same trace and ends with all components except cache1, cache2 in SC identical to
those in CM.

P (0): simple. Start out with the memory equal. No transitions means no labels in the trace,
a feat easily duplicated by CM.

P (n)⇒ P (n+ 1): Take an arbitrary execution

α = α1, α2, . . . , αn , αn+1

α1 through αn form an execution of SC of length n. By the inductive hypothesis, this
execution has a corresponding execution of CM β of some length that has the same trace as
α and leaves the memories identical:

β = β1, β2, . . . , βm , ?

All we have to show now is that for every possible transition αn → αn+1 that SC can make,
there is a corresponding sequence of transitions of CM βm + 1 → βm + 2 → . . . βk that
exhibits the same partial trace as the αn → αn+1 transition and leaves the memory of CM
in the same state as the memory of SC at αn+1.

The possible transitions of SC are:

• req-readi(x)

The corresponding transition for CM is also a req-readi. The same input label is added
to the trace, and all state elements are updated identically.

• req-writei(x, v)

The corresponding transition for CM is also a req-writei. The same input label is
added to the trace, and all state elements are updated identically.

• ret-readi(v)

The corresponding transition for CM is also a ret-readi. The same output label is
added to the trace, and all state elements are updated identically.
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• ret-writei(“OK
′′)

The corresponding transition for CM is also a ret-writei. The same output label is
added to the trace, and all state elements are updated identically.

• comp-readi(x)

The corresponding transition for CM is also a comp-readi. No labels are added to
the trace in either case. SC reads from a cache, CM reads from memory. As shown
in lecture, in a strong caching system the memory will contain the same value as the
cache for non-null entries.

• comp-writei(x, v)

The corresponding transition for CM is also a comp-readi. No labels are added to the
trace in either case. SC dumps the caches, but they are not reflected in our predicate
(the abstraction relation part of it).

• copyi(x)

The corresponding transition for CM is to perform no transition at all. Our predicate
remains satisfied.

• dropi(x)

The corresponding transition for CM is to perform no transition at all. Our predicate
remains satisfied.

As an aside, the Abstraction Theorem makes this proof a little clearer. The application
is analogous to using the Termination Theorem to show that a state machine always has
finite-length executions: it allows you to skip the induction ‘wrapper’ because it is a general
property of these problems.

Abstraction Relation:
A relation R from states of A to states of B is called an abstraction relation from A to B
provided that the following conditions hold:

1. (Start condition)
If qA is a start state of A, then there exists a start state qB of B such that (qA, qB) ∈ R.

2. (Step condition)
If qA and qB are reachable states of A and B, respectively, (qA, qB) ∈ R, and (qA, `, q

′
A)

is a step of A, then there is a sequence of (0 or more) steps of B that:
– starts with qB,
– has the same trace as the step of A, and
– ends with some state q′B such that (q′A, q

′
B) ∈ R.

Abstraction Theorem:
If there is an abstraction relation from A to B, then A implements B.


