
Massachusetts Institute of Technology Handout 22
6.042J/18.062J: Mathematics for Computer Science March 9, 2000
Professors David Karger and Nancy Lynch

Mini-Quiz 6

1. Write your name:

2. (Rosen, Sec. 2.6, Ex. 29) Let

A =

 1 0 1
1 1 0
0 0 1


B =

 0 1 1
1 0 1
1 0 1



Find the following:

(a) A ∨B
(b) A ∧B
(c) A�B

Massachusetts Institute of Technology Handout 22
6.042J/18.062J: Mathematics for Computer Science March 9, 2000
Professors David Karger and Nancy Lynch

Tutorial 6 Problems

Problem 1 Is a Harvard degree really worth more than an MIT degree?! Let us say that
a person with a Harvard degree starts with $40,000 and gets a $20,000 raise every year after
graduation, whereas a person with an MIT degree starts with $30,000, but gets a 20% raise
every year. Assume inflation is a fixed 8% every year. That is, $1.08 a year from now is
worth $1.00 today. (You’ll need a calculator to get final answers; if one is not available, it’s
ok to express the answer as a closed form numerical expression.)

(a) How much will a person with a Harvard degree be making in the nth year?

(b) How much will a person with an MIT degree be making in the nth year?

(c) How much is a Harvard degree worth today if the holder will work for n years following
graduation? Hint : In Lecture 8 a closed formula for

∑n
i=0 ir

i was derived.

(d) How much is an MIT degree worth in this case?

(e) If you plan to retire after twenty years, which degree would be worth more?

2 Handout 22: Tutorial 6 Problems

Problem 2 There are “sum” and “difference” operators that play the same role in discrete
math as integral and derivative operators place in calculus. In particular, the difference
operator ∆ is defined by

∆f(x) = f(x+ 1)− f(x)

and the summation operator

b∑
a

g(x)δx =
b−1∑
x=a

g(x)

This sum operator is a bit annoying, as many sloppy mathematicians will use the left hand
side to denote a sum up to b, rather than b− 1. But let’s work with it for today.

(a) Suppose that g(x) = ∆f(x). Prove that

b∑
a

g(x)δx = f(b)− f(a)

(b) Suppose that h(n) =
∑n

k=0 f(k). What is ∆h(n)?

(c) Prove that

∆(u(x)v(x)) = u(x)∆v(x) + v(x+ 1)∆u(x)

(d) The falling power function is defined by the equation

xm = x(x− 1) · · · (x−m+ 2)(x−m+ 1).

In other words, just like xm, it is a product of m terms, but they fall away from x. Prove

∆xm = mxm−1

Handout 22: Tutorial 6 Problems 3

(e) Find the value of

b∑
x=a

xm

4 Handout 22: Tutorial 6 Problems

Problem 3 Consider the Strong Caching system given in lecture as a labeled state machine:

Caching system (strong)

The system is composed of a main memory store that is accessed by two ’clients’. Each client
accesses the memory through a cache. When the memory is updated, the caches are cleaned out.

State machine:

• Q: For every x ∈ addresses:

– memory(x), an element of data

– cache1 (x), an element of data ∪ {null}
– cache2 (x), an element of data ∪ {null}

And a number of doubled structures (one for each client/cache):

– req1 , an element of {“read′′, “write′′} ∪ {null}
– reqaddr1 , an element of addresses ∪ {null} (used for both reads and writes)

– reqval1 , an element of data ∪ {null} (used for writes only)

– ret1 , an element of {“OK ′′,null} ∪ data

– req2 , an element of {“read′′, “write′′} ∪ {null}
– reqaddr2 , an element of addresses ∪ {null} (used for both reads and writes)

– reqval2 , an element of data ∪ {null} (used for writes only)

– ret2 , an element of {“OK ′′,null} ∪ data

• Q0: memory arbitrary, caches all null , all other components null .

• L: All are for i ∈ {1, 2} (each client). Note that, for each label, the italicized text is just a
description of the intended purpose.

Input labels:

req-readi(x), x ∈ addresses
an input from client i requesting to read the value in address x from cachei .
req-writei(x, v), x ∈ addresses, v ∈ data
a request by client i to write value v in location x in memory (not cache).

Internal labels:

comp-readi(x), x ∈ addresses
actually performed the read that was requested and stored the result.
comp-writei(x, v), x ∈ addresses, v ∈ data
actually performed the write that was requested.
copyi(x), x ∈ addresses
copied the value at x from memory into cachei.
dropi(x), x ∈ addresses
dropped the value at x from cachei.

Handout 22: Tutorial 6 Problems 5

Output labels:

ret-readi(v), v ∈ data
signal result of a read request and computation for the value at x.
ret-writei(“OK ′′)
signal completion of a write request and computation.

• δ:

req-readi(x)
Can occur anytime
if reqi = null then

reqi := “read′′

reqaddri := x

req-writei(x, v)
Can occur anytime
if reqi = null then

reqi := “write′′

reqaddri := x
reqvali := v

ret-readi(v)
Can occur if retvali ∈ values

reqi :=null
reqaddri := null
reqvali :=null
retvali := null

ret-writei(“OK ′′)
Can occur if retvali = “OK ′′

reqi :=null
reqaddri := null
reqvali :=null
retvali := null

comp-readi(x)
Can occur if reqi = “read′′, reqaddri = x, cachei(x) 6= null , and retvali = null

retvali := cachei(x)

comp-writei(x, v)
Can occur if reqi = “write′′, reqaddri = x, reqvali(x) = v, and retvali = null

memory(x) := v
retvali := “OK ′′

cache1 (x) := null
cache2 (x) := null

copyi(x)
Can occur anytime

cachei(x) := memory(x)

dropi(x)
Can occur anytime

cachei(x) := null

6 Handout 22: Tutorial 6 Problems

Also consider a simple Centralized Memory system as a labeled state machine:

Centralized memory system

The system is composed of a main memory store that is accessed by two ’clients’. Each client
accesses the memory directly.

State machine:

• Q: For every x ∈ addresses:

– memory(x), an element of data

And a number of doubled structures (one for each client):

– req1 , an element of {“read′′, “write′′} ∪ {null}

– reqaddr1 , an element of addresses ∪ {null} (used for both reads and writes)

– reqval1 , an element of data ∪ {null} (used for writes only)

– ret1 , an element of {“OK ′′,null} ∪ data

– req2 , an element of {“read′′, “write′′} ∪ {null}

– reqaddr2 , an element of addresses ∪ {null} (used for both reads and writes)

– reqval2 , an element of data ∪ {null} (used for writes only)

– ret2 , an element of {“OK ′′,null} ∪ data

• Q0: memory arbitrary, all other components null .

• L: All are for i ∈ {1, 2} (each client). Note that, for each label, the italicized text is just a
description of the intended purpose.

Input labels:

req-readi(x), x ∈ addresses
an input from client i requesting to read the value in address x from memory.
req-writei(x, v), x ∈ addresses, v ∈ data
a request by client i to write value v in location x in memory.

Internal labels:

comp-readi(x), x ∈ addresses
actually performed the read that was requested and stored the result.
comp-writei(x, v), x ∈ addresses, v ∈ data
actually performed the write that was requested.

Output labels:

ret-readi(v), v ∈ data
signal result of a read request and computation for the value at x.
ret-writei(“OK ′′)
signal completion of a write request and computation.

Handout 22: Tutorial 6 Problems 7

• δ:

req-readi(x)
Can occur anytime
if reqi = null then

reqi := “read′′

reqaddri := x

req-writei(x, v)
Can occur anytime
if reqi = null then

reqi := “write′′

reqaddri := x
reqvali := v

ret-readi(v)
Can occur if retvali ∈ values

reqi :=null
reqaddri := null
reqvali :=null
retvali := null

ret-writei(“OK ′′)
Can occur if retvali = “OK ′′

reqi :=null
reqaddri := null
reqvali :=null
retvali := null

comp-readi(x)
Can occur if reqi = “read′′, reqaddri = x, and retvali = null

retvali := memory(x)

comp-writei(x, v)
Can occur if reqi = “write′′, reqaddri = x, reqvali(x) = v, and retvali = null

memory(x) := v
retvali := “OK ′′

(a) Try to prove, as carefully as you can, that the strong caching system labeled state
machine in fact implements the centralized memory labeled state machine.

This proof can be done using ad hoc methods, starting from any execution of the caching
system and constructing the (possibly infinite) execution of the centralized memory machine.
The construction can proceed by structural induction on the definition of the execution of
the caching system.

Prove by induction that the trace of the nth finite prefix of the execution of the cache system
is the same as the trace of the corresponding finite prefix of the centralized memory machine.

