
Massachusetts Institute of Technology Handout ??
6.042J/18.062J: Mathematics for Computer Science March 8 2000
Professors David Karger and Nancy Lynch

Practice Quiz 1 Solutions

Problem 1 (6 points) Consider the following proposition.

∀x∀y (x < y → ∃z (x < z ∧ z < y))

(a) (2 points) Prove or disprove this proposition, assuming that the universe is the set
of integers.

The proposition is false. In the case where x = 0 and y = 1, there does not exist an integer
z such that x < z and z < y.

(b) (4 points) Write the negation of this proposition. Your solution may not use the ¬
symbol, but may use any of the relations =, <, >, ≤, or ≥.

∃x∃y (x < y ∧ ∀z (x ≥ z ∨ z ≥ y))

Problem 2 (10 points) Define the matrix

M =

[
0 1
1 1

]
.

Let Mn denote the product of n copies of the matrix M . Use ordinary induction to prove
that for all n ≥ 1, the upper right entry of Mn is Fn, the n-th Fibonacci number. State your
inductive hypothesis clearly.

For reference, the standard formula for the product of 2× 2 matrices is given below.

[
a b
c d

]
·
[
e f
g h

]
=

[
ae+ bg af + bh
ce+ dg cf + dh

]
1g

Recall that F0 = 0, F1 = 1, F2 = 1, F3 = 2,

Handout ??: Practice Quiz 1 Solutions 2

Proof. The proof is by induction. Let P (n) be the proposition that

Mn =

[
Fn−1 Fn
Fn Fn+1

]
.

In the base case, P (1) is true because

M1 =

[
0 1
1 1

]
=

[
F0 F1

F1 F2

]
.

In the inductive step, for n ≥ 1 assume P (n) to prove P (n + 1). The following equalities
hold.

Mn+1 = Mn ·M

=

[
Fn−1 Fn
Fn Fn+1

]
·
[

0 1
1 1

]
=

[
Fn Fn−1 + Fn
Fn+1 Fn + Fn+1

]
=

[
Fn Fn+1

Fn+1 Fn+2

]
The first step uses the definition of Mn. The second step uses the induction hypothesis and
the definition of the matrix M . We carry out a matrix multiplication in the third step and
use the Fibonacci recurrence in the last step. This shows that P (n) implies P (n + 1), and
the claim is proved by induction.

Problem 3 (12 points) The vertices of a directed graph can be partitioned into strongly-
connected components. Two vertices u and v belong to the same strongly connected compo-
nent if there is a path from u to v and a path from v to u. A strongly connected component
may consist of a single vertex.

Math Moose has noticed a strange phenomenon. He starts with a directed graph and par-
titions the vertices into strongly-connected components. He then removes all edges that
connect two vertices in the same strongly-connected component. The resulting graph always
seems to be acyclic.

An example is worked out in the figure below. The original directed graph is shown on the
left. The vertices a, b, and c form one strongly-connected component. The single vertex d

Handout ??: Practice Quiz 1 Solutions 3

forms a second strongly-connected component. Math Moose removes the edges a→ b, b→ c,
and c → a, since these edges connect vertices in the same strongly-connected component.
The resulting graph is shown on the right. Note that this graph is acyclic.

Use proof by contradiction to show that for every directed graph, application of Math Moose’s
procedure gives a directed acyclic graph.

Proof. Let G = (V,E) be an arbitrary directed graph. Let G′ = (V,E ′) be the directed
graph that remains after we remove all edges that connect two vertices in the same strongly-
connected component.

The proof is by contradiction. Suppose that G′ is not acyclic. Then let u and v be consecutive
nodes in a directed cycle. There is a path from u to v consisting of a single edge. There
also is a path from v to u, because the nodes are in a cycle. Since every edge in G′ is also
in G, these same two paths exist in the original graph G. Therefore, u and v are in the
same strongly-connected component of G. But then the edge from u to v should have been
removed during the construction of G′. Since the the edge was not removed, we have a
contradiction. Therefore, G′ is acyclic.

Problem 4 (12 points) One of the three monks working on the famed Towers of Hanoi
project recently rubbed his pained back and burst out, “Yo! What are we doing? This is
for chumps! Let’s punt!” But before wandering off to start up fast food joints, they must
evenly divide the monastery’s collection of prayer beads.

Initially, monk A has 5 beads, monk B has 3 beads, and monk C has 4 beads. The monastic
order has strict rules regarding the exchange of prayer beads. Only the following transactions
are allowed.

1. Monk B may give a bead to monk A at any time.

2. If C has an odd number of beads, then monk A may give a bead to monk B.

3. If C has an even number of beads or monk A has at least two more beads then monk
B, then monk C may give or take a bead from either monk A or monk B.

(a) (3 points) Model the situation with a state machine. Define the set of states,the set
of start states, and the set of transitions.

The set of states Q consists of all triples (a, b, c) such that a, b, c ≥ 0 and a + b + c = 12.
The set of starts states Q0 consists of the single triple (5, 3, 4). The set δ contains six types
of transition:

Handout ??: Practice Quiz 1 Solutions 4

(a, b, c) → (a+ 1, b− 1, c) (b > 0)

(a, b, c) → (a− 1, b+ 1, c) (a > 0 and c is odd)

(a, b, c) → (a− 1, b, c+ 1) (a > 0 and either c is even or a ≥ b+ 2)
(a, b, c) → (a, b− 1, c+ 1) (b > 0 and either c is even or a ≥ b+ 2)
(a, b, c) → (a+ 1, b, c− 1) (c > 0 and either c is even or a ≥ b+ 2)
(a, b, c) → (a, b+ 1, c− 1) (c > 0 and either c is even or a ≥ b+ 2)

(b) (3 points) Prove that the monks can reach the state where monk A has 0 beads,
monk B has 9 beads, and monk C has 3 beads by describing a sequence of steps leading to
this state.

Initially, monk C gives a bead to monk B using rule 3. Then monk A gives his 5 beads to
monk B using rule 2 repeatedly.

(c) (6 points) Prove that the monks can not reach the state where every monk has 4
beads by using the Invariant Theorem.

Proof. The proof uses the Invariant Theorem. We prove that if monk C has an even
number of beads, then monk A has more beads than monk B. This implies that the monks
can never evenly divide up the prayer beads; an even division would require that C have 4
beads, but then the invariant would imply that A has more beads then B.

The invariant holds in the single start state Q0, since in this case monk C has an even
number of beads (4), and monk A has more beads than monk B (5 vs. 3). Furthermore, if
the invariant holds before a transition, then it holds after a transition. There are six cases
to check, corresponding to the six types of transition.

1. (a, b, c) → (a + 1, b − 1, c) where b > 0. If c is odd, then the invariant holds after
the transition because the hypothesis of the invariant if false. If c is even, then the
invariant holds after the transition because a+ 1 > a > b > b− 1.

2. (a, b, c) → (a − 1, b + 1, c) where a > 0 and c is odd. The invariant holds after the
transition because the hypothesis of the invariant is false.

3. (a, b, c) → (a − 1, b, c + 1) where a > 0 and either c is even or a ≥ b + 2. If c is
even, then the invariant holds after the transition because the hypothesis is false. If
c is odd, then the invariant holds after the transition because the conclusion is true;
that is, monk A has more beads than monk B.

The argument in the remaining three cases is identical to the argument for case 3. Since the
invariant hold in all start states and is maintained under all transitions, the claim is proved
by the Invariant Theorem.

Handout ??: Practice Quiz 1 Solutions 5

Problem 5 Use induction to prove our proposition, P(n),

13 + 23 + . . .+ n3 =

(
n(n+ 1)

2

)2

whenever n is a natural number.

Base Case: n = 0

The left side is an empty sum, so 0 =
(

0·1
2

)2
= 0.

Inductive Step: Show that P (n)→ P (n+ 1).

By the inductive hypothesis, we assume that

13 + 23 + . . .+ n3 =

(
n(n+ 1)

2

)2

13 + 23 + . . .+ n3 + (n+ 1)3

=

(
n(n+ 1)

2

)2

+ (n+ 1)3

=
n2(n+ 1)2 + 4(n+ 1)(n+ 1)2

4

=
(n2 + 4n+ 4)(n+ 1)2

4

=

(
(n+ 1)(n+ 2)

2

)2

And our hypothesis is proved.

Common errors

The most common error was to assume that the hypothesis was true, and then to prove it
by reducing both sides of the equation to something that is obviously equal. This is not a
good proof technique.

13 + 23 + . . .+ n3 + (n+ 1)3 =

(
(n+ 1)(n+ 2)

2

)2

(
n(n+ 1)

2

)2

+ (n+ 1)3 =

(
(n+ 1)(n+ 2)

2

)2

n2(n2 + 2n+ 1)

4
+ n3 + 3n2 + 3n+ 1 =

(n2 + 3n+ 2)2

4
(n4 + 2n3 + n2) + (4n3 + 12n2 + 12n+ 4)

4
=

n4 + 3n3 + 2n2 + 3n3 + 9n2 + 6n+ 2n2 + 6n+ 4

4
n4 + 6n3 + 13n2 + 12n+ 4

4
=

n4 + 6n3 + 13n2 + 12n+ 4

4

Handout ??: Practice Quiz 1 Solutions 6

A technique which is similar but which is not at all correct is to start with the equation you
wanted to prove (ie, f(n) = g(n)) and then perform the same operations on both sides of
the equation until they’re equal.

n2 + 3n+ 1 = n2 + 3n+ 1

3n+ 1 = 3n+ 1

1 = 1

This is OK for a quick check, but does not quite work as a proof, since it is possible to get
equality at the end even if the starting sides of the equation were not equal. For example

n2 + 3n+ 1 = 2n2 + 5n+ 8

0 · (n2 + 3n+ 1) = 0 · (2n2 + 5n+ 8)

0 = 0

Remember that in an ideal direct proof, each step should follow from the previous one, until
the final step which is what we want to prove.

Problem 6 Prove the set identity

((A−B) ∪ (B − A))c = (Ac ∪B) ∩ (A ∪Bc)

Using the definition of set difference, both of De Morgan’s Laws, and the commutativity of
union (in that order):

((A−B) ∪ (B − A))c = ((A ∩Bc) ∪ (B ∩ Ac))c
= (A ∩Bc)c ∩ (B ∩ Ac)c
= (Ac ∪B) ∩ (Bc ∪ A)
= (Ac ∪B) ∩ (A ∪Bc)

Alternatively, one can use the definitions of the operations. We need to prove x is in the
LHS if and only if it is in the RHS.

x ∈ ((A− B) ∪ (B − A))c means that x /∈ (A− B) ∪ (B − A). This means that x /∈ A− B
and x /∈ B − A.

So consider cases. If x ∈ A, then certainly x ∈ A ∪ Bc. Furthermore, since by assumption
x /∈ A − B, we must have x ∈ B. Thus, x ∈ B ∪ Ac. Putting these together shows
x ∈ (A∪Bc)∩(B∪c). Now consider the other case. If x /∈ A, meaning x ∈ Ac, then certainly
x ∈ Ac ∪ B. Also, (since x /∈ B − A), we must have x /∈ B. That is, x ∈ Bc. Therefore,
x ∈ Bc ∪ A. Thus, x ∈ (Ac ∪B) ∩ (Bc ∪ A).

This proves one direction; the other is similar.

Handout ??: Practice Quiz 1 Solutions 7

Problem 7 A full binary tree is either

• A leaf node with no subtrees

• A non-leaf node with a left and a right subtree, each of which is a full binary tree.

(a) Draw all full binary trees with 5 or fewer nodes.

(b) Prove that for any full binary tree, the number of non-leaf nodes is exactly one less
than the number of leaves.

Solution 1: Let,

P (n) = “For a full binary tree with n non-leaf nodes

n = l − 1 where l is the number of leaves”

Proof by strong induction on the number of non-leaves, n:

Base Case: n = 0, tree is made up of exactly one node. P (0) is true since a node with no
subtrees is a leaf (l = 1) and thus 0 = 1− 1 .

Inductive Hypothesis: For n ≤ k non-leaf nodes assume P (n) is true, that is, “For a full
binary tree with n ≤ k, the non-leaf nodes n = l − 1”.

Inductive Step: Prove P(n=k+1): For a full binary tree with k + 1 non-leaf nodes, the
number of non-leaf nodes in the tree by definition is made up of:

• one root node,

• the non-leaf nodes in the left-subtree of the root, nleft, and

• the non-leaf nodes in the right-subtree of the root, nright.

The number of leaves, ltree in the tree by definition is made up of:

• the number of leaves in the left-subtree of the root, lleft, and

• the number of leaves in the right-subtree of the root, lright.

k + 1 = 1 + nleft + nright by the definition of full binary tree
= 1 + (lleft − 1) + (lright − 1) by the inductive hypothesis
= 1 + (lleft + lright)− 1− 1
= ltree − 1 by definition of full binary tree

Solution 2:

Handout ??: Practice Quiz 1 Solutions 8

We use induction on the given recursive definition.

There is only one base case, which is a leaf node with no subtrees. So there is one leaf node
and no non-leaf nodes, satisfying the statement.

There is only one combination case, which is a non-leaf node (call it v) with a left and a right
subtree, each of which is a full binary tree. By the IH, each of these subtrees has exactly
one fewer non-leaf nodes than leaf nodes. Taken together, there are then two fewer non-leaf
nodes than leaf nodes. Since this accounts for all of the nodes in the tree except for v (which
is a non-leaf node), the tree has exactly one fewer non-leaf nodes than leaf nodes.

Errors: The most common error in this problem was to use facts about full binary trees
that were not at all obvious from the above definition. For example, some people said during
the inductive step

• “find a node with two children that are leaves; take away the leaves; this gives a smaller
full binary tree to which an inductive hypothesis applies.”

• “find a leaf turn it into a non-leaf by adding two children; the new tree has k + 1
non-leaf nodes, while the original tree has k non-leaf nodes to which the inductive
hypothesis can be applied”

Unfortunately, it is not at all obvious from the above definition of a full binary tree that
that taking away or adding two leaf nodes results in a full binary tree. While this may be
true, it is something that would have to be proven.

Main point is, that when you do induction on a recursive definition, your inductive step
needs to be based on the combination rules of the inductive definition, and not on other
things that are “obvious” from drawing pictures.

Problem 8 Use the following tables to describe the properties of the various relations and
functions. Write yes or no in each box. Don’t give proofs (it’d be too hard to squeeze them
into the boxes). Pay careful attention to the specified domains and ranges.

(a) The following relations:

• R = {(a, b) ∈ (N− {0})2 | a divides b}

• S = {(X, Y) ∈ (2N − {∅})2 | X ∩ Y 6= ∅}

• T = {(x, y) ∈ R× R | x+ y = 0}

(Recall that antisymmetric means that a ∼ b and b ∼ a imply a = b).

relation reflexive symmetric antisymmetric transitive function
R : a | b
S : X ∩ Y 6= ∅
T : x+ y = 0

Handout ??: Practice Quiz 1 Solutions 9

relation reflexive symmetric antisymmetric transitive function
R : a | b yes no yes yes no
S : X ∩ Y 6= ∅ yes yes no no no
T : x+ y = 0 no yes no no yes

(b) The following functions:

• f : N→ N, f(x) = 5x.

• g : R+ → N, g(x) = bxc.

• h : R→ R
+, h(x) = ex.

Give an inverse if one exists (under the given domain and range).

function injective surjective inverse
f(x) = 5x
g(x) = bxc
h(x) = ex

function injective surjective inverse
f(x) = 5x yes no none
g(x) = bxc no yes none
h(x) = ex yes yes ln(x)

Errors: A common error here was not to pay attention to the domain and range. Although
f(x) = 5x is a bijection from the reals to the reals, it is not a bijection from the naturals to
the naturals because there is no natural number that satisfies 5x = 1.

Problem 9 Consider the following algorithm, which takes natural numbers a and b, with
b > 0, and returns an ordered pair of natural numbers.

Algorithm Div(a, b)

if (a < b)
return (0, a)

else
(q, r)←Div(a− b, b)
return (q + 1, r)

(a) Prove Div terminates in at most a+ 1 steps.

We use strong induction on a. The inductive hypothesis is “if Div(a′, b) terminates for all
a′ < a, then Div(a, b) terminates”.

Handout ??: Practice Quiz 1 Solutions 10

Base Case: a < b. Then Div returns immediately (that is, in one step), which is certainly
no more than a+ 1 steps, since a ≥ 0.

Inductive step: a ≥ b. Then 0 ≤ a − b < a, since b > 0. In this case, there is a recursive
call Div(a − b, b). By the IH, this recursive call returns in at most a − b + 1 steps. Since
a− b < a, this is at most a+ 1 steps.

Common errors

Please note that many people received credit for a base case of a = 0, which is actually
wrong. This case is only reached when a is a multiple of b, so the induction doesn’t stand,
since for cases where a does not divide b, no base case has been shown.

We insisted that you use induction for this because any sort of argument that goes something
like “And then it keeps on subtracting X until...” is not rigorous. Such an argument is
begging for induction.

(b) Prove that Div returns the quotient and remainder of a on division by b.

Recall that the quotient and remainder of a on division by b are defined to be the unique
integers q and r such that a = qb + r and 0 ≤ r < b. These integers must exist by the
Division Algorithm.

We use strong induction on a.

Base case: a < b. Then Div immediately returns (0, a). Since a = 0 · b + a and 0 ≤ a < b,
these are the quotient and remainder of a on division by b.

Inductive step: a ≥ b. Then 0 ≤ a− b < a. In this case, there is a recursive call Div(a− b, b).
By the IH, this recursive call returns the quotient and remainder of a − b on division by b.
So a− b = qb + r and 0 ≤ r < b. Then a = (q + 1)b + r and 0 ≤ r < b. So q + 1 and r are
the quotient and remainder of a on division by b, and these are returned by Div.

Problem 10 David is located at position (1, 0) on the two-dimensional (Z×Z) x-y plane.
His house is located at the origin. David wants to go home. But it is windy, and each time
David takes a one-unit step east or west, he also gets blown a one-unit step north or south
(he can pick which).

y

x

Handout ??: Practice Quiz 1 Solutions 11

(a) On the grid above, mark with X’s all the points that David can reach in one step.
Mark with O’s the points that David can reach in two steps. (The axes labeled x and y
intersect at David’s house.)

(b) Give an informal explanation for why David can never get home.

David starts off with the sum of his coordinates (1 + 0 = 1) odd. Every time he moves, the
parity of each coordinate changes, so the sum of his coordinates remains odd. Since the sum
of the coordinates of his home (0 + 0 = 0) is even, he can never reach it.

(c) Describe a state machine that represents David’s motion, and list its transitions.

We introduce state variables x, y ∈ Z. We designate exactly one start state: the one for
which x = 1 and y = 0. The transitions are as follows:

move(go, blow)
Precondition: go, blow ∈ {−1, 1}
Effect: x← x+ go

y ← y + blow

Getting the notation for transitions wrong was a common error. In particular, some people
wrote program code that returned values. The fragments we use for transitions reflect
changes to state variables, which are best represented by assignment operations. The role of
the Effect clause is to describe what the value of the state variables will be after the transition.
We have adopted an assignment style of notation for the Effect clause to accentuate the fact
that state variables are changed by the transition.

(d) Prove that David can never get home.

We use the following invariant: x+y is odd for all reachable states. This is true for the start
state (0 + 1 = 1). For each transition, go and blow are each odd, so their sum is even. Thus
each transition increases x+ y by an even amount (go+ blow), preserving the invariant.

Since x + y is even for the state corresponding to home, it is not a reachable state of our
state machine. Thus David can never get home.

Errors: There were two main types of errors in coming up with invariants.

One was to provide a correct statement that was not amenable to an inductive proof. For
example, the fact that x 6= y is true of all reachable states, but is not preserved by all
transitions (you can get from (2,0) to (1,1), for instance). This means that it is not really
possible to prove it by induction because there are certain states (such as (2, 0)) where the
inductive step doesn’t work. Note that writing an inductive proof does not strictly require
that the property be preserved for all transitions (only those starting from reachable states).
As a practical matter, however, it is hard to make the inductive step take advantage of the
fact that the first step was reachable. (This is because reachability is not a property of the
state in isolation but depends on the entire state machine definition). Thus one has little

Handout ??: Practice Quiz 1 Solutions 12

choice but to show in the inductive step that any state (reachable or not) that satisfies the
invariant has outgoing transitions leading only to states that satisfy the invariant.

Another mistake was to prove an invariant that is true but does not imply what we want.
Some proved that the total distance travelled was always a multiple of

√
2. While this

invariant is indeed true, it does not prove what we want because straight-line distance from
the starting point does not always have to be a multiple of

√
2, so the above fact does not

amount to a proof.

Problem 11 Let F be a function from A to B and let G = F−1 be its inverse relation (G
is a relation from B to A, but not necessarily a function). Prove that G◦F is an equivalence
relation on A.

By definition, x is related to y by G ◦ F iff there is a z ∈ B such that x is related to z by F
and z is related to y by G. That is, z = F (x) and z = F (y). So x is related to y by G ◦ F
iff F (x) = F (y).

Reflexitivity: Let x ∈ A. Then F (x) = F (x), so (x, x) ∈ G ◦ F .

Symmetry: Let x, y ∈ A such that (x, y) ∈ G ◦ F . Then F (x) = F (y) (and F (y) = F (x)).
So (y, x) ∈ G ◦ F .

Transitivity: Let x, y, z ∈ A such that (x, y), (y, z) ∈ G ◦ F . Then F (x) = F (y) and
F (y) = F (z). So F (x) = F (z) and (x, z) ∈ G ◦ F .

One common mistake for this problem was to assume that G ◦F is the identity function. In
general, G is not a function, and neither is G ◦ F .

Problem 12 Consider the following algorithm that takes an array (list) A[1 . . . n] of num-
bers such that A[1] < A[2] < · · · < A[n], and a number q, and is supposed to find q if it is
present in the list.

Find(A, n, q)

i← 1
j ← n+ 1
While (j − i > 1)

choose some k with i < k < j
if A[k] ≤ q

i← k
else

j ← k
Return i

(a) prove this function terminates

We first prove (by induction on l) that after the lth pass through the while loop, j−i ≤ n−l.

Handout ??: Practice Quiz 1 Solutions 13

Base Case: l = 0. When we first reach the while loop, j − i = n because we just set i to 1
and j to n+ 1.

Inductive Step: By the IH, j − i ≤ n− l after the lth pass through the while loop. During
the (l + 1)st pass, either i or j is moved to a value (that of k) strictly between their values
from the end of the lth pass. Thus the (l + 1)st pass decreases j − i by at least 1. So after
the (l + 1)st pass through the while loop, j − i < n− l − 1 = n− (l + 1).

The most common error on this part was hand-waving. Informal descriptions of the long-
term behavior of the algorithm are not considered proofs by 6.042 standards. Since the
reader can safely be assumed to accept induction as a valid proof technique, the above proof
at very least gives the reader much less room to object to the argument.

The second most common error was to try to prove the desired statement directly by induc-
tion. This just doesn’t work. If it did, we would not have introduced the more complicated
proof technique that we said should be used in this case.

(b) Now suppose that q = A[r] for some r. State an invariant of the while loop relating
i, j, and r. The invariant should be “obviously provable by induction” but you need not
prove it.

i ≤ r < j.

(c) Assuming the invariant, prove that Find returns r.

When the loop terminates, j − i ≤ 1 (j ≤ i + 1). Also, the invariant still holds. So
i ≤ r < j ≤ i+ 1. Since i and r are integers, i = r. Since i is then returned, Find returns r.

Surprisingly enough, a number of people didn’t even try to make use of the invariant. Use
of induction was also common. The invariant deals with exactly the issues that would
otherwise require induction. This is why the correctness of the invariant would be proven by
induction. Some people apparently didn’t read the question and tried to prove the invariant
correct instead of proving that Find returns r.

