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Quiz 1 Solutions

Problem 1 [10 points| Quantifiers

Consider the following predicates where the universe of discourse is the set of all people:
P(z): x is a hacker

Q(z): x is an MIT student

(
(

-

x): x is an artist
):

S(x

x is willing to waltz

Express each of the following statements using quantifiers, logical connectives, and and the
above predicates:

(a) [1 point] No hackers are willing to waltz.
Solution. Az P(x) A S(x)

(b) [1 point] No artists are unwilling to waltz.
Solution. Az R(z) A -S(z)

(c) [1 point] All MIT students are hackers.
Solution. Vz Q(z) = P(z)

(d) [1 point] MIT students are not artists.
Solution. Vz Q(z) = —R(x)

(e) [4 points] Does (d) follow logically from (a), (b), and (c¢)? If so, give a proof. If not,
give a counterexample.

Solution. Assume (a), (b), and (¢). Then, we want to prove that, for any z such that Q(x)
(for any MIT student), it follows that =R(z) (that student is not an artist).

From (c), we know that P(z) (that the student is a hacker). If we rearrange (a) to
Ve P(x) = —S(z)

then clearly =S(z) (the student is not willing to waltz). So, if we rearrange (b) to
Vr —S(z) = -R(zx)

it follows that =R(x) (the student is not an artist).
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(f) [1 point] Translate into English: (Vz)(R(z) V S(z) = Q(x)).

Solution. All who are artists or people willing to waltz are MIT students.

(g) [l point] Translate into English: (3z)(R(z) A -Q(z)) = (Vz)(P(z) = S(x)).

Solution. If there is an artist who is not an MIT student, then all hackers are willing to
waltz.

Problem 2 [10 points| Induction

Prove by induction (other methods will not receive credit) that
(1-2)+(2-3)+(3-4)+--~+(n—1)n:%(n—l)-n~(n+1)

whenever n is a natural number greater than 1.

Solution. Prove P(n) == (1-2)+(2-3)+(3-4)+---+(n—n=31(n—1)-n-(n+1)

Basis. (P(2)) (1-2)=3(1)-2-(3).

Induction. Assume P(n). Prove P(n + 1).

£1-2)+(2-3)+(3-4)+---+(n—1)73+n(n+1) = %(n—l)-n-(n%—l)#—n(n%—l)

~
Apply TH

= n(n+1) E(n— 1) +1}
— a4 1) Em g}

= %n(n%— 1)[n+ 2]

Problem 3 [10 points| Structural Induction
Consider the sets Sy, .55, ... defined inductively as

o S():{O,l}
e Foralln>1,5, = {% | z,y € Sn,l}

i.e., where S, contains the average values of each pair of numbers in S,,_;. Note we allow
x =y in the definition of S,,.

(a) [1 point] Write out the elements of each of the following sets: Sy, Sz, and Ss.
Solution.
Sl {07 1/27 ]-}

S, {0,1/4,1/2,3/4,1}
Sy {0,1/8,1/4,3/8,1/2,5/8,3/4,7/8,1}
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(b) [2 points] Generalize (in your own words or in symbols) to give the elements of .S,,.

Solution. S, contains 2" + 1 elements (including 0 and 1) evenly spaced along the unit
interval; i.e., S, = {i/2"0 < i < 2"},

(c) [7 points] Prove by induction that for all n € N, 1/3 ¢ S,,. You will probably want
to strengthen the induction hypothesis. You may not assume your generalization from the
previous part is true; you must prove that statement if you wish to use it.

Solution. Strengthen the theorem to
P(n) = “For all a/b € S,, with a,b € N where a/b is in reduced form, b = 2* for some k”

Clearly, if Vn P(n), then Vn 1/3 ¢ S,,. Thus, we need only prove Vn P(n).
Base cases. 0 =0/2°, 1 =1/2°.

Induction. Assume P(n). By the construction of S, 1, all elements of S, ;1 are of the form
(x +y)/2 for some z,y € S,. Fix any two such elements z,y € S,,, where (by the induction
hypothesis) x = a/2* and y = ¢/2° with a,b,k,¢ € N.

Assume WLOG k > /. Then,

(z+y)/2 = (a/2"+¢/2°/2
= (a/2" +c2"/2%) /2
= (a+c2"")/2kH

While this may not be in reduced form, reduction cannot introduce any non-2 factors into
the denominator, so this fits the form specified by the theorem. Therefore, P(n + 1).

By induction, Vn P(n). Thus, Vn 1/3 ¢ S,,.
Problem 4 [10 points| Relations

(a) [l point] What is the common name for the reflexive closure of the “less than” relation?

Solution. less than or equal to

(b) [1 point] What is the common name for the transitive closure of the “child of” relation?

Solution. descendant of

(c) [2 points] What is the common name for the inverse of the “teaches” relation (that is,
if 2Ty means x teaches y, how do we say aT~'b)?

Solution. is taught by
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(d) [3 points] Consider the partial order “aRb iff a divides b without remainder” on the
universe of natural numbers greater than 1. What are the minimal elements under this
relation usually called?

Solution. primes

(e) [3 points] Is the relation “xRy iff + = y or z is not y’s roommate” an equivalence
relation? Why or why not?

Solution. No, because it is not transitive. If x and y are roommates but neither is a
roommate of z, then xRz and zRy but -~z Ry.

Problem 5 [10 points| Precedence Relations

Death is planning the end of the world. This involves a number of tasks each of which takes
one minute to complete. The prerequisites associated with these tasks are listed below.

ABBRvV. TASK PREREQUISITES
C Compose a requiem
N Notify the UN B
D Signal the daemons B
B Blow the trumpet
T Sell T-shirts: “All I got was this lousy t-shirt.” N
Q Grade the 6.042 quiz S
G Open the gates D,N
S Put out the sun C,N

(a) [b points| Represent the tasks and their prerequisites as a directed graph.

Solution. This is very similar to the constructions in the notes.

(b) [5 points] Death is omnipotent and can therefore work on as many tasks at a time as
he wishes. What is the minimum amount of time required for him to end the world? Why?
(An explanation without proof is fine.)

Solution. 4 time units, since that is the length of the critical path.

Problem 6 [5 points] Graphs

Let G = (V, E) be a simple, undirected graph, and let C' be a set of colors. Define a partial
coloring of G using C' to be a function that assigns to each node in V' either a color in C
or no color. (That is, it colors some, none, or all of the nodes using colors in C.) Define
a partly colored graph to be a simple, undirected graph G = (V| E) together with a partial
coloring of G.

Prove the following fact about partly colored graphs:
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In a partly colored graph, any walk connecting a colored node to an uncolored node
must include a colored node adjacent to an uncolored node.

Solution. Consider the path p = wvyvy--- v, of which v; is colored and v, is uncolored.
Assume there is no edge (v;,v;11) such that v; is colored and v;;1 is uncolored. Then, by
induction starting from vy, v; are colored for all i, so v is colored; this is a contradiction.

Problem 7 [15 points| Algorithms

Let G = (V, E) be a simple, undirected graph. The following algorithm, RedBlue, manip-
ulates partial colorings of G using C' = {red,blue}. (Partial colorings are defined in the
previous problem.)

Initially, one vertex r of G is colored red, and all the other vertices are
uncolored. At each step, one of two events occurs:

a) Some uncolored vertex v that is adjacent to a red vertex becomes
blue.

b) Some uncolored vertex v that is adjacent to a blue vertex be-
comes red.

If neither rule can be applied, the algorithm terminates.

(a) [3 points|] Formalize this algorithm as a state machine; that is, define @, Q, and §.

Solution. A state ¢ consists of a (total) function f from V to {red,blue, uncolored}. A
start state is any state in which f maps exactly one v € V' to red, and all others to uncolored.
The transitions are all of the form:

(¢,¢)€d <= FveV qf(v)=uncolored
A[(¢".f(v) =red A Jw f(w) =blue A (v,w) € E)
V(¢'.f(v) = blue A Jw ¢.f(w) =red A (v,w) € E) |
AV # v q.f(w) = ¢ f(w)

(b) [3 points] Prove that the algorithm eventually terminates.

Solution. We describe a termination function. Define the value of the termination function
to be the number d of uncolored vertices. Each step decreases d, so we can appeal to the
Termination Theorem and conclude that the algorithm always terminates. Alternatively, we
can expand the proof a bit more: since d starts at n—1 and is always > 0, it must eventually
reach some minimum value (by well-ordering), whereupon the algorithm terminates.

(c) [3 points] Using the fact stated in Problem 6, prove that if G is connected, then all
vertices are colored when the algorithm terminates.
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Solution. Say the algorithm terminates with some vertex uncolored. Since the graph is
connected, there is a path from v to some colored vertex w. By the given fact, there must
be an edge along this path for which one endpoint x is colored and the other y is uncolored.
We can apply one of the two steps above, assigning to y the opposite of x’s color. Thus, the
algorithm should not have terminated yet.

(d) [3 points] Consider applying this algorithm to bipartite graphs, i.e., graphs in which
the vertices can be partitioned into two sets A and B such that there is no edge between
any pair of vertices in A, and similarly for B. Suppose the node r that is colored red in the
initial state is in set A. Using the Invariant Theorem, prove that in any reachable state, only
vertices of A are colored red and only vertices of B are colored blue.

Solution. The Invariant Theorem requires that we show some condition is true in all the
start states, and that it is preserved by every step.

P(n) =“After n vertices are colored, all red vertices are in A and all blue vertices are in B.”

Base case. In any start state, there is exactly one red vertex in R—by construction—and
no blue vertices. Therefore, P(1).

Induction. Assume P(n). Then, consider an execution in which n + 1 vertices are colored.
Consider the vertex ¢ which was colored last. If we uncolor it, we can apply the induction
hypothesis and conclude that all red vertices were in R and all blue vertices were in B.

Now we must prove that vertex ¢ is colored correctly. Assume WLOG that vertex ¢ is in
B. For i to have been colored, it must have been the case that i was adjacent to a colored
vertex; but all vertices adjacent to i are in R (by the definition of bipartite), so ¢ must have
been colored blue. This satisfies the invariant theorem, so P(n + 1).

Thus, ¥n P(n), so all red vertices are in R and all blue vertices are in B.

(e) [3 points] Combine the previous parts to prove that when run on a connected bipartite
graph, the above algorithm terminates and outputs a valid 2-coloring.

Solution. We proved the algorithm terminates on connected graphs with all vertices colored.
By the invariant above, this means all vertices in R are red and all vertices in B are blue.
By the definition of bipartite, there exists no pair of like-colored vertices connected by an
edge, so this is a valid 2-coloring.



