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Quiz 1 Solutions

Problem 1 [10 points] Quantifiers

Consider the following predicates where the universe of discourse is the set of all people:

P (x): x is a hacker

Q(x): x is an MIT student

R(x): x is an artist

S(x): x is willing to waltz

Express each of the following statements using quantifiers, logical connectives, and and the
above predicates:

(a) [1 point] No hackers are willing to waltz.

Solution. 6 ∃x P (x) ∧ S(x)

(b) [1 point] No artists are unwilling to waltz.

Solution. 6 ∃x R(x) ∧ ¬S(x)

(c) [1 point] All MIT students are hackers.

Solution. ∀x Q(x)⇒ P (x)

(d) [1 point] MIT students are not artists.

Solution. ∀x Q(x)⇒ ¬R(x)

(e) [4 points] Does (d) follow logically from (a), (b), and (c)? If so, give a proof. If not,
give a counterexample.

Solution. Assume (a), (b), and (c). Then, we want to prove that, for any x such that Q(x)
(for any MIT student), it follows that ¬R(x) (that student is not an artist).

From (c), we know that P (x) (that the student is a hacker). If we rearrange (a) to

∀x P (x)⇒ ¬S(x)

then clearly ¬S(x) (the student is not willing to waltz). So, if we rearrange (b) to

∀x ¬S(x)⇒ ¬R(x)

it follows that ¬R(x) (the student is not an artist).
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(f) [1 point] Translate into English: (∀x)(R(x) ∨ S(x) =⇒ Q(x)).

Solution. All who are artists or people willing to waltz are MIT students.

(g) [1 point] Translate into English: (∃x)(R(x) ∧ ¬Q(x)) =⇒ (∀x)(P (x) =⇒ S(x)).

Solution. If there is an artist who is not an MIT student, then all hackers are willing to
waltz.

Problem 2 [10 points] Induction

Prove by induction (other methods will not receive credit) that

(1 · 2) + (2 · 3) + (3 · 4) + · · ·+ (n− 1)n =
1

3
(n− 1) · n · (n+ 1)

whenever n is a natural number greater than 1.

Solution. Prove P (n) ::= (1 · 2) + (2 · 3) + (3 · 4) + · · ·+ (n− 1)n = 1
3
(n− 1) · n · (n+ 1)

Basis. (P (2)) (1 · 2) = 1
3
(1) · 2 · (3).

Induction. Assume P (n). Prove P (n+ 1).

(1 · 2) + (2 · 3) + (3 · 4) + · · ·+ (n− 1)n︸ ︷︷ ︸
Apply IH

+n(n+ 1) =
1

3
(n− 1) · n · (n+ 1) + n(n+ 1)

= n(n+ 1)

[
1

3
(n− 1) + 1

]
= n(n+ 1)

[
1

3
n+

2

3

]
=

1

3
n(n+ 1) [n+ 2]

Problem 3 [10 points] Structural Induction

Consider the sets S1, S2, . . . defined inductively as

• S0 = {0, 1}

• For all n ≥ 1, Sn =
{
x+y

2
| x, y ∈ Sn−1

}
i.e., where Sn contains the average values of each pair of numbers in Sn−1. Note we allow
x = y in the definition of Sn.

(a) [1 point] Write out the elements of each of the following sets: S1, S2, and S3.

Solution.

S1 {0, 1/2, 1}
S2 {0, 1/4, 1/2, 3/4, 1}
S3 {0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1}
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(b) [2 points] Generalize (in your own words or in symbols) to give the elements of Sn.

Solution. Sn contains 2n + 1 elements (including 0 and 1) evenly spaced along the unit
interval; i.e., Sn = {i/2n|0 ≤ i ≤ 2n}.

(c) [7 points] Prove by induction that for all n ∈ N, 1/3 6∈ Sn. You will probably want
to strengthen the induction hypothesis. You may not assume your generalization from the
previous part is true; you must prove that statement if you wish to use it.

Solution. Strengthen the theorem to

P (n) = “For all a/b ∈ Sn with a, b ∈ N where a/b is in reduced form, b = 2k for some k”

Clearly, if ∀n P (n), then ∀n 1/3 6∈ Sn. Thus, we need only prove ∀n P (n).

Base cases. 0 = 0/20, 1 = 1/20.

Induction. Assume P (n). By the construction of Sn+1, all elements of Sn+1 are of the form
(x+ y)/2 for some x, y ∈ Sn. Fix any two such elements x, y ∈ Sn, where (by the induction
hypothesis) x = a/2k and y = c/2` with a, b, k, ` ∈ N.

Assume WLOG k ≥ `. Then,

(x+ y)/2 = (a/2k + c/2`)/2

= (a/2k + c2k−`/2k)/2

= (a+ c2k−`)/2k+1

While this may not be in reduced form, reduction cannot introduce any non-2 factors into
the denominator, so this fits the form specified by the theorem. Therefore, P (n+ 1).

By induction, ∀n P (n). Thus, ∀n 1/3 6∈ Sn.

Problem 4 [10 points] Relations

(a) [1 point] What is the common name for the reflexive closure of the “less than” relation?

Solution. less than or equal to

(b) [1 point] What is the common name for the transitive closure of the “child of” relation?

Solution. descendant of

(c) [2 points] What is the common name for the inverse of the “teaches” relation (that is,
if xTy means x teaches y, how do we say aT−1b)?

Solution. is taught by
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(d) [3 points] Consider the partial order “aRb iff a divides b without remainder” on the
universe of natural numbers greater than 1. What are the minimal elements under this
relation usually called?

Solution. primes

(e) [3 points] Is the relation “xRy iff x = y or x is not y’s roommate” an equivalence
relation? Why or why not?

Solution. No, because it is not transitive. If x and y are roommates but neither is a
roommate of z, then xRz and zRy but ¬xRy.

Problem 5 [10 points] Precedence Relations

Death is planning the end of the world. This involves a number of tasks each of which takes
one minute to complete. The prerequisites associated with these tasks are listed below.

Abbrv. Task Prerequisites

C Compose a requiem
N Notify the UN B
D Signal the daemons B
B Blow the trumpet
T Sell T-shirts: “All I got was this lousy t-shirt.” N
Q Grade the 6.042 quiz S
G Open the gates D,N
S Put out the sun C,N

(a) [5 points] Represent the tasks and their prerequisites as a directed graph.

Solution. This is very similar to the constructions in the notes.

(b) [5 points] Death is omnipotent and can therefore work on as many tasks at a time as
he wishes. What is the minimum amount of time required for him to end the world? Why?
(An explanation without proof is fine.)

Solution. 4 time units, since that is the length of the critical path.

Problem 6 [5 points] Graphs

Let G = (V,E) be a simple, undirected graph, and let C be a set of colors. Define a partial
coloring of G using C to be a function that assigns to each node in V either a color in C
or no color. (That is, it colors some, none, or all of the nodes using colors in C.) Define
a partly colored graph to be a simple, undirected graph G = (V,E) together with a partial
coloring of G.

Prove the following fact about partly colored graphs:
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In a partly colored graph, any walk connecting a colored node to an uncolored node
must include a colored node adjacent to an uncolored node.

Solution. Consider the path p = v1v2 · · · vk, of which v1 is colored and vk is uncolored.
Assume there is no edge (vi, vi+1) such that vi is colored and vi+1 is uncolored. Then, by
induction starting from v1, vi are colored for all i, so vk is colored; this is a contradiction.

Problem 7 [15 points] Algorithms

Let G = (V,E) be a simple, undirected graph. The following algorithm, RedBlue, manip-
ulates partial colorings of G using C = {red, blue}. (Partial colorings are defined in the
previous problem.)

Initially, one vertex r of G is colored red, and all the other vertices are
uncolored. At each step, one of two events occurs:

a) Some uncolored vertex v that is adjacent to a red vertex becomes
blue.

b) Some uncolored vertex v that is adjacent to a blue vertex be-
comes red.

If neither rule can be applied, the algorithm terminates.

(a) [3 points] Formalize this algorithm as a state machine; that is, define Q, Q0, and δ.

Solution. A state q consists of a (total) function f from V to {red, blue, uncolored}. A
start state is any state in which f maps exactly one v ∈ V to red, and all others to uncolored.
The transitions are all of the form:

(q, q′) ∈ δ ⇐⇒ ∃v ∈ V q.f(v) = uncolored

∧
[

(q′.f(v) = red ∧ ∃w f(w) = blue ∧ (v, w) ∈ E)

∨ (q′.f(v) = blue ∧ ∃w q.f(w) = red ∧ (v, w) ∈ E)
]

∧∀w 6= v q.f(w) = q′.f(w)

(b) [3 points] Prove that the algorithm eventually terminates.

Solution. We describe a termination function. Define the value of the termination function
to be the number d of uncolored vertices. Each step decreases d, so we can appeal to the
Termination Theorem and conclude that the algorithm always terminates. Alternatively, we
can expand the proof a bit more: since d starts at n−1 and is always ≥ 0, it must eventually
reach some minimum value (by well-ordering), whereupon the algorithm terminates.

(c) [3 points] Using the fact stated in Problem 6, prove that if G is connected, then all
vertices are colored when the algorithm terminates.
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Solution. Say the algorithm terminates with some vertex uncolored. Since the graph is
connected, there is a path from v to some colored vertex w. By the given fact, there must
be an edge along this path for which one endpoint x is colored and the other y is uncolored.
We can apply one of the two steps above, assigning to y the opposite of x’s color. Thus, the
algorithm should not have terminated yet.

(d) [3 points] Consider applying this algorithm to bipartite graphs, i.e., graphs in which
the vertices can be partitioned into two sets A and B such that there is no edge between
any pair of vertices in A, and similarly for B. Suppose the node r that is colored red in the
initial state is in set A. Using the Invariant Theorem, prove that in any reachable state, only
vertices of A are colored red and only vertices of B are colored blue.

Solution. The Invariant Theorem requires that we show some condition is true in all the
start states, and that it is preserved by every step.

P (n) =“After n vertices are colored, all red vertices are in A and all blue vertices are in B.”

Base case. In any start state, there is exactly one red vertex in R—by construction—and
no blue vertices. Therefore, P (1).

Induction. Assume P (n). Then, consider an execution in which n + 1 vertices are colored.
Consider the vertex i which was colored last. If we uncolor it, we can apply the induction
hypothesis and conclude that all red vertices were in R and all blue vertices were in B.

Now we must prove that vertex i is colored correctly. Assume WLOG that vertex i is in
B. For i to have been colored, it must have been the case that i was adjacent to a colored
vertex; but all vertices adjacent to i are in R (by the definition of bipartite), so i must have
been colored blue. This satisfies the invariant theorem, so P (n+ 1).

Thus, ∀n P (n), so all red vertices are in R and all blue vertices are in B.

(e) [3 points] Combine the previous parts to prove that when run on a connected bipartite
graph, the above algorithm terminates and outputs a valid 2-coloring.

Solution. We proved the algorithm terminates on connected graphs with all vertices colored.
By the invariant above, this means all vertices in R are red and all vertices in B are blue.
By the definition of bipartite, there exists no pair of like-colored vertices connected by an
edge, so this is a valid 2-coloring.


