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Problem Set 10.5 Solutions

Problems

Problem 1 Eight men and seven women, all single, happen randomly to have purchased single
seats in the same 15-seat row of a theater.

(a) What is the probability that the first two seats contain a marriageable couple, i.e., a single
man next to a single woman?

Solution.

There are
(

15
2

)
= 105 possible pairs that could occupy the first two seats, only 8 · 7 = 56 of which

are marriageable couples. So the probability is 56/105 = 8/15.

�

(b) What is the expected number of pairs of adjacent seats which contain marriageable couples?
(For example, if the sequence of men and women in the seats is

MMMWMMMMWWWWWWM,

then there are four possible couples sitting in the pairs of adjacent seats that start at the 3rd, 4th,
7th and 14th seats, respectively.)

Solution.

Let the random variable S be the number of pairs of seats containing a marriageble couple; we want
to find E [S]. Let Ai be the event “there is a marriageable couple in seats i and i+ 1,” and Si be
the indicator random variable for Ai; that is, Si = 1 if Ai and Si = 0 otherwise. Then S =

∑14
i=1 Si.

Since Si is the indicator random variable for Ai, E [Si] = Pr(Ai). Since each pair of seats is like
any other, Pr(Ai) = Pr(A1) = 8/15, as we computed in the previous part. Because expectation is
linear,

E [S] =
14∑
i=1

E [Si] = 14 · 8
15
.

Note that this works even though the Si’s are not independent. That’s the beauty of linearity of
expectation!

�

Problem 2 One hundred twenty students take the 6.042 final exam. The mean on the exam is
90 and the lowest score was 30. You have no other information about the students and the exam,
e.g., you should not assume that the final is worth 100 points.
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(a) State the best possible upper bound on the number of students who scored at least 180.

Solution.

Let R be the score of a student chosen at random. Apply Markov’s Bound to R− 30:

Pr(R ≥ 180) = Pr(R− 30 ≥ 150) ≤ E [R− 30]
150

=
60
150

=
2
5
.

So at most 2
5 · 120 = 48 students scored greater than or equal to 180.

�

(b) Give an example set of scores which achieve your bound.

Solution.

Of the 120 students, 48 score 180 and 72 score 30. The mean is 48·180+72·30
120 = 90, as required.

�

(c) If the maximum score on the exam was 100, give the best possible upper bound on the number
of students who scored at most 50.

Solution.

Apply Markov’s Bound to 100−R:

Pr(R ≤ 50) = Pr(100−R ≥ 50) ≤ E [100−R]
50

=
10
50

=
1
5
.

So at most 1
5 · 120 = 24 students scored 50 or less.

�

Problem 3 A couple plans to have children until they have a boy. What is the expected number
of children that they have, and what is the variance?

Solution.

Let C be the expected number of children up to and including the first boy. We showed E [C] = 2
in Lecture 22. We can compute the variance as follows:

Var [C] = E
[
C2
]
− E [C]2 =

∞∑
k=1

k2 ·
(

1
2

)k
− 22 =

1
2 + (1

2)2

(1− 1
2)3
− 4 = 6− 4 = 2

The sum is computed by differentiating the formula for the sum of an infinite geometric sequence.

�

Problem 4 Suppose that n people have their hats returned at random. Let Xi = 1 if the ith
person gets his or her own hat back and 0 otherwise. Let Sn =

∑n
i=1Xi, so Sn is the total number

of people who get their own hat back. Show that
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(a) E
[
X2
i

]
= 1/n.

Solution.

Note that X2
i = Xi, which is 1 with probability 1/n and 0 otherwise. Thus, E

[
X2
i

]
= E [Xi] = 1/n.

�

(b) E [XiXj ] = 1/n(n− 1) for i 6= j.

Solution.

XiXj is 1 if both Xi and Xj are 1, and 0 otherwise. Pr(Xi = 1 ∧ Xj = 1) = 1
n ·

1
n−1 = 1

n(n−1) .
Thus, E [XiXj ] = 1/n(n− 1).

�

(c) E
[
S2
n

]
= 2. Hint : Use (a) and (b).

Solution.

E
[
S2
n

]
= E

( n∑
i=1

Xi

)2
 = E

∑
i

∑
j

XiXj

 =
∑
i

∑
j

E [XiXj ]

=
∑
i

E
[
X2
i

]
+
∑
i

∑
j 6=i

E [XiXj ] = n · 1
n

+ n(n− 1) · 1
n(n− 1)

= 2.

�

(d) Var [Sn] = 1.

Solution.

Var [Sn] = E
[
S2
n

]
− E2 [Sn] = 2− (n · 1

n)2 = 2− 1 = 1

�

(e) Pr(Sn ≥ 11) ≤ .01 for any n ≥ 11. Hint : Use Chebyshev’s Inequality.

Solution.

Pr(Sn ≥ 11) = Pr(Sn − E [Sn] ≥ 11− E [Sn])
= Pr(Sn − E [Sn] ≥ 10)

≤ Var [Sn]
Var [Sn] + 102

=
1

101
< .01

Note that the Xi’s are Bernoulli variables but are not independent, so Sn does not have a binomial
distribution and the estimates from Lecture Notes 21 do not apply.

�

Problem 5 Let X and Y be independent random variables taking on integer values in the range
1 to n uniformly. Compute the following quantities:
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(a) Var [aX + bY ]

Solution.

First, we compute Var [X], which is also Var [Y ] since X and Y are identically distributed.

Var [X] = E
[
X2
]
− E [X]2 =

n∑
i=1

i2 · 1
n
−

(
n∑
i=1

i · 1
n

)2

=
(n+ 1)(2n+ 1)

6
− (n+ 1)2

4
=
n2 − 1

12

We now use this to compute Var [aX + bY ]:

Var [aX + bY ] = Var [aX] + Var [bY ] because aX and bY are independent

= a2Var [X] + b2Var [Y ] Theorem 4.4 in Lecture Notes 24

= (a2 + b2)Var [X] because Var [X] = Var [Y ]

= (a2 + b2)
n2 − 1

12
substitution from computation above

�

(b) E [max(X,Y )]

Solution.

First we compute the probability that the maximum of X and Y is equal to i:

Pr(max(X,Y ) = i) = Pr(X ≤ i ∧ Y ≤ i)− Pr(X < i ∧ Y < i)
= Pr(X ≤ i) Pr(Y ≤ i)− Pr(X < i) Pr(Y < i)

=
i

n
· i
n
− i− 1

n
· i− 1

n

=
2i− 1
n2

We now compute the expectation using these probabilities:

E [max(X,Y )] =
n∑
i=i

i · Pr(max(X,Y ) = i) =
n∑
i=i

i · 2i− 1
n2

=
1
n2
·
n∑
i=1

(2i2 − i) =
1
n2
·
(

2 · n(2n+ 1)(n+ 1)
6

− n(n+ 1)
2

)
=

(n+ 1)(4n− 1)
6n
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Alternatively, we could also compute it as follows:

E [max(X,Y )] =
∞∑
i=0

Pr(max(X,Y ) > i) =
n−1∑
i=0

(1− Pr(max(X,Y ) ≤ i))

= n−
n−1∑
i=0

Pr(X ≤ i ∧ Y ≤ i) = n−
n−1∑
i=0

Pr(X ≤ i) Pr(Y ≤ i)

= n−
n−1∑
i=0

(
i

n

)2

= n− 1
n2
· n(n− 1)(2n− 1)

6

=
(n+ 1)(4n− 1)

6n

�

(c) E [min(X,Y )]

Solution.

Note that max(X,Y ) + min(X,Y ) = X + Y . Thus,

E [min(X,Y )] = E [X] + E [Y ]− E [max(X,Y )]

=
n+ 1

2
+
n+ 1

2
− (n+ 1)(4n− 1)

6n

=
(n+ 1)(2n+ 1)

6n

�

(d) E [|X − Y |]
Solution.

We could compute this directly. However, note that |X − Y | = max(X,Y )−min(X,Y ). Thus,

E [|X − Y |] = E [max(X,Y )−min(X,Y )]
= E [max(X,Y )]− E [min(X,Y )]

=
(n+ 1)(4n− 1)

6n
− (n+ 1)(2n+ 1)

6n

=
n2 − 1

3n

�

(e) Var [|X − Y |].
Solution.
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We start with one of the standard formulas for variance:

Var [|X − Y |] = E
[
|X − Y |2

]
− E [|X − Y |]2 = E

[
(X − Y )2

]
− E [|X − Y |]2

We could compute E
[
(X − Y )2

]
directly, but note that Var [X − Y ] = E

[
(X − Y )2

]
−E [X − Y ]2,

and E [X − Y ] = 0. We can compute Var [X − Y ] using the result in part (a). Thus,

Var [|X − Y |] = Var [X − Y ]− E [|X − Y |]2

= (12 + (−1)2) · n
2 − 1
12

−
(
n2 − 1

3n

)2

=
(n2 − 1)(n2 + 2)

18n2

�

Problem 6 Suppose you are playing the game “Hearts” with three of your friends. In Hearts,
all the cards are dealt to the players, in this case the four of you will each have 13 cards.

(a) What is the expectation and variance of the number of hearts in your hand?

Solution.

Let H be the number of hearts in your hand, and let Xi be the indicator random variable for the
event that the ith card in your hand is a heart. Then H =

∑13
i=1Xi. So

E [H] =
13∑
i=1

E [Xi] =
13∑
i=1

Pr(ith card is a heart) =
13∑
i=1

1
4

=
13
4
.

To compute variance, we first compute E
[
H2
]
, following the solution to Problem 4c.

E
[
H2
]

= E

( 13∑
i=1

Xi

)2
 =

∑
i

E [Xi] +
∑
i

∑
j 6=i

E [XiXj ]

Note that X2
i = Xi, so E

[
X2
i

]
= 1/4. When i 6= j, XiXj = 1 if cards i and j are both hearts, and 0

otherwise. The probability that both cards are hearts is
(

13
2

)
/
(

52
2

)
, so E [XiXj ] =

(
13
2

)
/
(

52
2

)
= 3/51.

In the summation above, there are 13 E
[
X2
i

]
terms, and 13 · 12 = 156 terms of the form E [XiXj ]

with i 6= j. Thus,

Var [H] = E
[
H2
]
− E [H]2 = 13 · 1

4
+ 156 · 3

51
− (

13
4

)2 ≈ 1.864.

�
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(b) What is the expectation and variance of the number of suits in your hand?

Solution.

Let N denote the number of suits in a hand. Let Xs be the indicator random variable for the event
that there is a spade in the hand. Define Xh, Xd, Xc analogously for the three remaining suits:
hearts, diamonds, and clubs. Then N = Xs +Xh +Xd +Xc.

The expectation of each of the indicator variables is the probability that a hand contains the
corresponding suit. Thus, for i ∈ {s, h, d, c}

E [Xi] = 1−
(

52−13
13

)(
52
13

) ≈ 0.9872,

because
(

52−13
13

)
is the number of hands that are missing the particular suit, and

(
52
13

)
is the total

number of hands.

E [N ] = E [Xs +Xh +Xd +Xc] = E [Xs] + E [Xh] + E [Xd] + E [Xc] ≈ 4 · 0.9872 = 3.9488.

To compute variance, we compute E
[
N2
]

directly, and then Var [N ] = E
[
N2
]
− E [N ]2. We first

calculate Pr(N = i) for i = 1, 2, 3, 4.

Pr(N = 1) =
4(
52
13

) ≈ 6.299× 10−12,

because there are four possible hands of all one suit out of
(

52
13

)
possible hands of 13 cards.

Pr(N = 2) =

(
4
2

) [(
26
13

)
− 2
](

52
13

) ≈ 9.827× 10−5,

because there are
(

4
2

)
ways to choose which two suits. There are

(
26
13

)
ways to choose 13 cards from

the 26 possible cards of those two suits. Two of those
(

26
13

)
hands actually contain only one suit.

Pr(N = 3) =

(
4
3

) [(
39
13

)
−
(

3
2

)(
26
13

)
+ 3
](

52
13

) ≈ 0.05097,

because there are
(

4
3

)
ways to choose the three suits, and

(
39
13

)
ways to choose 13 cards from the 39

cards of those three suits. But that includes hands with only one or two suits. So, using Inclusion-
Exclusion, we subtract the

(
3
2

)(
26
13

)
ways to choose two of the three suits and then choose 13 cards

from the 26 cards of those suits. This subtracts out the three hands with only one suit twice, so
we add these back.

Of course,

Pr(N = 4) = 1− (Pr(N = 1) + Pr(N = 2) + Pr(N = 3)) ≈ 0.9489.

Thus,

E
[
N2
]

= 1 · Pr(N = 1) + 4 · Pr(N = 2) + 9 · Pr(N = 3) + 16 · Pr(N = 4)
≈ 0 + 0.0004 + 0.4587 + 15.1824 = 15.6415

This allows us to complete the calculation of the variance:

Var [N ] ≈ 15.6415− (3.9488)2 ≈ 0.0485.

�
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Problem 7 We have two coins: one is a fair coin and the other is a coin that produces heads
with probability 3/4. One of the two coins is picked, and this coin is tossed n times.

(a) Does the Weak Law of Large Numbers allow us to predict what limit, if any, is approached
by the expected proportion of heads that turn up as n approaches infinity? Briefly explain.

Solution.

The Weak Law of Large Numbers tells us that the proportion of heads will approach 1/2 if the
fair coin was picked, and it will approach 3/4 if the other coin was picked. But it does not tell
us anything about which of these two numbers it will approach, as we have no information about
which coin is picked.

�

(b) How many tosses suffice to make us 95% confident which coin was chosen? Explain.

Solution.

To guess which coin was picked, set a threshold t between 1/2 and 3/4. If the proportion of heads is
less than the threshold, guess it was the fair coin; otherwise, guess the biased coin. Let the random
variable Hn be the number of heads in the first n flips. We need to flip the coin enough times so
that Pr(Hn/n > t) ≤ 0.05 if the fair coin was picked, and Pr(Hn/n < t) ≤ 0.05 if the biased coin
was picked. A natural threshold to choose is 5/8, exactly in the middle of 1/2 and 3/4.

Hn is the sum of independent Bernoulli variables, which each have variance 1/4 for the fair coin
and 3/16 for the biased coin. Using Chebyshev’s Inequality for the fair coin,

Pr
(
Hn

n
>

5
8

)
= Pr

(
Hn

n
− 1

2
>

5
8
− 1

2

)
= Pr

(
Hn −

n

2
>
n

8

)
= Pr

(
Hn − E [Hn] >

n

8

)
≤ Pr

(
|Hn − E [Hn] | > n

8

)
≤ Var [Hn]

(n/8)2
=

n/4
n2/64

=
16
n

For the biased coin, we have

Pr
(
Hn

n
<

5
8

)
= Pr

(
3
4
− Hn

n
>

3
4
− 5

8

)
= Pr

(
3n
4
−Hn >

n

8

)
= Pr

(
E [Hn]−Hn >

n

8

)
≤ Pr

(
|Hn − E [Hn] | > n

8

)
≤ Var [Hn]

(n/8)2
=

3n/16
n2/64

=
12
n

We are 95% confident if these are at most 0.05, which is satisfied if n ≥ 320.

Because the variance of the biased coin is less that of the fair coin, we can do slightly better if make
our threshold a bit bigger, to about 0.634, which gives 95% confidence with 279 coin flips.

Because Hn has a binomial distribution, we can get a much better bound using the estimates from
Lecture 21, giving 95% confidence when n > 42.

�

Problem 8
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(a) LetX be a random variable whose value is an observation drawn uniformly at random from the
{i ∈ Z | −n ≤ i ≤ n}. Let Y = X2. Show that E [XY ] = E [X] E [Y ]. Are X and Y independent?

Solution.

To see that E [XY ] = E [X] E [Y ], note that E [X] = 0 and E [XY ] = E
[
X3
]

= 0 since X and X3

are both symmetric; that is, Pr(X = i) = Pr(X = −i) and Pr(X3 = i) = Pr(X3 = −i) for all i.

However X and Y are not independent, since Y is determined by X. There are many cases that
demonstrate this, for example, Pr(Y = 0) = 1/(2n+ 1), but Pr(Y = 0 | X = 0) = 1.

�

(b) Show that in general for any two random variables X and Y that if E [XY ] = E [X] E [Y ]
then Var [X + Y ] = Var [X] + Var [Y ].

Solution.
Var [X + Y ] = E

[
(X + Y )2

]
− (E [X + Y ])2

= E
[
X2 + 2XY + Y 2

]
− (E [X] + E [Y ])2

= E
[
X2
]

+ 2E [XY ] + E
[
Y 2
]
− E [X]2 − 2E [X] E [Y ]− E [Y ]2

=
(

E
[
X2
]
− E [X]2

)
+
(

E
[
Y 2
]
− E [Y ]2

)
+ 2 (E [XY ]− E [X] E [Y ])

= Var [X] + Var [Y ] .

�

Problem 9 Consider the following 3-stage experiment:

In the first stage, I throw a 6-sided die. The number of spots that I get determines how many
instances of the second stage to perform.

In the second stage, I throw a 6-sided die. This stage is repeated once for each spot I got in the
first stage. The total number of spots that I get in this stage determines how many instances of
the third stage to perform.

In the third stage, I throw a 6-sided die. This stage is repeated once for each spot I got in all
instances of the second stage.

For example, if the outcome of the first stage is 3, then stage 2 gets played 3 times. Suppose the
outcomes of the 3 instances of stage 2 are 1, 3, 4. Then stage 3 is played 1 + 3 + 4 = 8 times, and
the score is the sum of 8 instances of stage 3.

Assume that all throws are mutually independent.

My score is the total number of spots on all the instances of the third stage.

What is my expected score?

(Analyze this as carefully as you can, using Wald’s theorem. Be careful about uses of independence.)

Solution.

Let X be the random variable whose value is the roll in the first stage. Let Y1, Y2, . . . , YX be
the random variable whose values are the rolls in the second stage. Define Y = Y1 + · · · + YX .
Let Z1, Z2, . . . , ZY be the random variable whose values are the rolls in the third stage. Define
Z = Z1 + · · ·+ ZY . We want to find E [Z].
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All the rolls are mutually independent, so we can use Wald’s theorem to get E [Y ] = E [X] E [Yi] =
(7/2)2. Since Y is determined by rolls that are independent of the rolls in the third stage, Y and Zi
are independent. So we apply Wald‘s theorem again to get E [Z] = E [Y ] E [Zi] = (7/2)3 = 42.875.

�

Problem 10 Suppose that someone is infected with an unknown incurable contagious disease.
Every day he encounters n healthy people and infects each of them with probability p. Encounters
are mutually independent. These people in turn meet n people and infect them with probability p
and so on.

(a) Write a recurrence for the expected number of sick people on the (k + 1)-st day in terms of
the expected number of sick people on the kth day. Assume that each day every sick person meets
n different persons.

Solution.

Let the random variable Sk be the number of sick people at the end of the kth day. We want an
expression for Sk+1 in terms of Sk. The base case is S0 = 1.

Let the sick people after day k be numbered 1, . . . , Sk, and let the random variable Hi,k be the
number of (healthy) people infected on day k + 1 by the ith sick person from day k. We get
Sk+1 = Sk+

∑Sk
i=1Hi,k. Hi,k has a binomial distribution with parameters n and p, so E [Hi,k] = np,

provided i ≤ Sk. That is, Pr(Hi,k = x|Sk ≥ i) = Pr(H = x), where H is the binomial random
variable with parameters n and p. Thus,

E [Sk+1] = E [Sk] + E

[
Sk∑
i=1

Hi,k

]
by linearity of expectation

= E [Sk] + E [Sk] · E [H] by Wald’s Theorem
= E [Sk] (1 + np) since E [H] = np

If we let ek = E [Sk] then e0 = 1 and ek+1 = ek(1 + np).

�

(b) Solve the recurrence of part (a).

Solution.

ek = (1 + np)k.

�

(c) Now suppose that any sick person recovers from the disease each day with probability r. Find
the expected number of sick people on the kth day.

Solution.

Let Bi,k be the indicator variable for whether the ith sick person from day k gets better. Then
E [Bi,k] = r and Sk+1 = Sk +

∑Sk
i=1(Hi,k − Bi,k). Let B be the Bernoulli random variable with
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parameter r. Then, as before,

E [Sk+1] = E [Sk] + E

[
Sk∑
i=1

Hi,k

]
− E

[
Sk∑
i=1

Bi,k

]
by linearity of expectation

= E [Sk] + E [Sk] · E [H]− E [Sk] · E [B] by Wald’s Theorem
= E [Sk] (1 + np− r) since E [H] = np and E [B] = r

and with this new recurrence, ek+1 = ek(1 + np− r), so ek = (1 + np− r)k.
�

Problem 11 In this problem, we analyze probabilistically the first stage of bubble sort performed
on a list of n integers {i1, . . . in}. We assume that all the integers are distinct.

On the first step we compare integers i1 and i2. If i1 > i2 we swap them otherwise we leave them
as they are.

On step k (2 ≤ k ≤ n − 1), we compare the new ik with ik+1. If ik > ik+1 we swap else we leave
them as they are.

We assume that the order of the integers is chosen uniformly from all possible orderings.

(a) If a number x is randomly (uniformly) chosen from a set of n distinct numbers, what is the
probability that x is the largest number in the set?

What is the probability that on the kth step (2 ≤ k ≤ n− 1), ik+1 is the biggest integer to appear
in the list so far?

Solution.

Pr(choosing largest of n numbers) = 1/n.

Pr(ik+1 in k step is biggest so far) = 1/(k + 1).

�

(b) Let Ck be the indicator random variable for the event “ik+1 > ik”. What is E [Ck]?

Solution.

We can prove by a simple induction that ik is always the biggest of the first k elements at the
beginning of the kth step.

E [Ck] = Pr(ik+1 > ik) = Pr(ik+1 is biggest so far) =
1

k + 1
.

�

(c) Let random variable C =
∑n

k=1Ck. Give an asymptotic bound for E [C] as well as an
interpretation of what E [C] is.

Solution.

Since we swap iff ik > ik+1, Ck is also the indicator variable for not swapping on the kth step.
There are n−1 steps in a stage of bubble sort, so n−1−C is the total number of swaps in a stage,
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and E [C] is the expected number of non-swapping steps. We can compute it as follows:

E [C] =
∑
k

E [Ck] =
n∑
k=2

1
k
∼ lnn.

�


