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Problem Set 10 Solutions

Problems:

Problem 1 Recall the envelope guessing game demonstrated in lecture. (You do go to lecture,
right?) You are shown two envelopes, each lying face down on a table. There is a number from
{0, . . . , n} written inside each. You pick an envelope and get to see the number in that envelope.
You can then either choose to stay with that number, or switch to the number written in the other
envelope. You win if the number you end up with is the larger of the two (that is, if either you
originally picked the larger and stayed, or if you originally picked the smaller and switched).

A randomized strategy for this game is a function that, for each number i that may be revealed
in the envelope you look at, assigns a probability pi of switching. For example, a strategy where
pi = 1

2 for all i effectively ignores the number revealed and chooses randomly. A strategy where
pi = 1 for i < n

2 and pi = 0 for i ≥ n
2 would switch if the number revealed is in the lower half of

the range and stay if it is in the upper half of the range.

(a) Prove that the strategy described in class for winning with probability better than 1/2 is
optimal if the envelopes are filled with x and x+1, where x is chosen uniformly from {0, . . . , n−1}.
In other words, since we have shown that the strategy given in lecture wins with probability at
least 1

2 + 1
2n , show that the expected value of wins per guess with any randomized strategy (any

set of {p0, p1, . . . pn} is at most 1
2 + 1

2n .

Solution.

Let pi denote the probability that you switch if you see the number i. This is an arbitrary choice,
so it covers every strategy (a strategy is such a set of pi). Then, the probability that you win if
the envelopes contain the pair (i, i+ 1) is the probability that you will see the smaller number and
switch or you will see the bigger number and stay. Since the probability of picking either envelope
(and thus either number) is 1/2, the probability that you win is

1
2
pi +

1
2

(1− pi+1)

Then, since the pair in the envelopes can range from (0, 1) to (n− 1, n), the total probability that
you win is:

n−1∑
i=0

1
n

(
1
2
pi +

1
2

(1− pi+1)
)

=
1
2

+
1

2n

n−1∑
i=0

(pi − pi+1) =
1
2

+
1

2n
(p0 − pn) ≤ 1

2
+

1
2n
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(b) Optional question: Can you think of another strategy that is also optimal as described above?
Is this new strategy ‘really’ optimal?

Solution.

This can almost be read directly off of the probability formula. The strategy is to switch if 0 is
revealed, stay if n is revealed, and act arbitrarily otherwise (always switch, always stay, switch half
the time, etc). This is reasonable, since those two choices are guaranteed to lead to a win.

No, it’s not truly an optimal strategy – there is no guarantee that the distribution of the envelopes
even includes the endpoints, in the general case. It relies on the envelopes being filled with the
given distribution.

Problem 2 A new fault-tolerant computer network contains 100,000 computer nodes, and is
designed to function adequately when no more than 5000 computers are down. Suppose that
the probability that any particular computer is down is 4%; moreover, these probabilities are
independent for different computers.

(a) Estimate the probability that exactly 5000 computers are down.

Solution.

f100000,0.04(5000) = 1.7264 · 10−55

(b) Estimate the probability that the network can function adequately.

Solution.

Here, we must estimate the probability that more than 95000 computers are fault free. As a rough
but high approximation, we can notice that the expected number of computers to be down is 4000.
If we assume that all numbers of down computers from 5001 to 100,000 are less likely to occur than
5000 computers being down, we can upper bound the probability that more than 5000 computers
are down by

95000 · Pr(95000 computers working) = 95000 · 1.7264 · 10−55 = 1.640 · 10−50

which should suggest that the probability of a functioning network is extremely high, greater than
1− 1.640 · 10−50.

For a more precise bound, we can find a lower bound on the probability that the network can
function adequately:

Pr(> 95000 computers working) = 1− Pr(≤ 95000 computers working)
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An upper bound for Pr(≤ 95000 computers working) is given by:

F100000,0.96 (0.95 · 100000) ≤ 1− α
1− α

p

fn,p(α · n)

=
1− α
1− α

p

fn,(1−p)((1− α) · n)

≈ 4.8 · fn,(1−p)((1− α) · n)

Plugging in for fn,(1−p)((1− α) · n) from part a, we get:

F100000,0.96 (0.95 · 100000) ≤ 8.2866 · 10−55

Thus, it follows that:

Pr(> 95000 computers working) ≈ 1

Problem 3 The Gallup polling service is conducting a poll to see what percentage of Americans
believe that 6-year-olds should be given the legal right to decide where they should live. They
would like to be accurate (after all, this is a very serious issue) to within a 2% margin of error, with
at least 98% probability. Estimate how many people they would need to poll to be able to make
this claim of reliability. (As in lecture, assume that they are polling with replacement, so they may
poll the same person twice).

Solution.

We can follow the form used in lecture, using the bounds shown there. (Note that this does not
tell us the minimum number of people we need to poll to be sure enough, just a sufficient number).
Using the general formula

δ ≤ 2Fn, 1
2
((

1
2
− ε)n)

we have δ = 0.02, ε = 0.02, so

δ ≤ 2Fn, 1
2
(
12
25
n)

≤ 2 · 1− 0.48
1− 0.48

0.5

· fn, 1
2
(0.48n)

≤ 26 ·

(
2(0.48lg( 0.5

0.48)+0.52lg( 0.5
0.52))n

√
2π0.48 · 0.52n

)

≤ 26 ·
(

2−0.00115446·n

1.25231108
√
n

)

The easiest way to solve this is just plugging in each potential n into the final equation until we
find where it must be that δ ≤ 0.02. It turns out that it is sufficient to survey approximately 3569
people.
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Problem 4 Let X1, X2, and X3 be three mutually independent random variables, each having
the uniform distribution, Pr(Xi = k) equal to 1/3 for each of k = 1, k = 2, and k = 3. Let M be
another random variable giving the maximum of these three random variables.

(a) What is the distribution of M?

Solution.

This can be easily hashed out by counting the possible outcomes:

M is 1 with probability
1
27

2 with probability
7
27

3 with probability
19
27

(b) What is the expected value of M?

Solution.

Directly from the above, it is:

1
27

(1) +
7
27

(2) +
19
27

(3) =
8
3

(c) Generalize to n variables with possible values 1, 2, . . . n.

Solution.

We can solve this by examining the probabilities as follows:

Pr(M ≤ k) = Pr(no Xi is greater than k) =
(
k

n

)n

However,

Pr(M = k) = Pr(M ≤ k)− Pr(M ≤ k − 1)

=
(
k

n

)n
−
(
k − 1
n

)n
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And the expectation of M becomes:

n∑
k=1

[
k ·
((

k

n

)n
−
(
k − 1
n

)n)]
=

n∑
k=1

[
k ·
(
k

n

)n]
−

n∑
k=1

[
k ·
(
k − 1
n

)n]

=
n∑
k=1

[
k ·
(
k

n

)n]
−
n−1∑
k=0

[
(k + 1) ·

(
k

n

)n]

=
n∑
k=1

[
k ·
(
k

n

)n]
−
n−1∑
k=0

[
k ·
(
k

n

)n]
−
n−1∑
k=0

(
k

n

)n

= n−
n−1∑
k=0

(
k

n

)n

Problem 5 Suppose a length n string of 0’s and 1’s is chosen uniformly randomly (e.g., by n
independent tosses of fair coin) and then wrapped around to form a circle.

(a) What is the maximum number of occurrences of the string 0k (k 0’s) in this circle? What
is the expected number of occurrences of 0k? (Note: A string of k + 1 0’s counts as two strings
of length k – starting in the first position of the string and starting in the second position. Also
remember that there is no particular start or end of the circle.)

Solution.

The maximum number of 0k substrings is n – in a string of all 0’s, a new such substring occurs
at every position. The expected number can be found by simply adding up probabilities of the
separate events that the string occurs starting at position i, which should be n

2k
. While the events

are not independent, we are ‘overcounting’ in exactly the correct way. This concept is referred to,
of course, as linearity of expectation.

To be more rigorous, define random variables Xi for i = 1, 2, . . . n, where Xi = 1 if a string of k 0’s
starts at position i and 0 if it does not. Then, we are looking for E[X1 +X2 + . . .+Xn], which by
linearity of expectation must be E[X1] + E[X2] + . . .+ E[Xn].

This can be envisioned as a counting problem instead. There are 2n possible strings. Each position
will begin a substring of 0k for 2n−k different strings. Thus, the total number of such substrings
divided by the number of possible strings is n2n−k

2n , which simplifies to n
2k

.

(b) Suppose k is even. What is the expected number of occurrences of 0
k
2 1

k
2 (total length k)?

Solution.

This is the same as in the previous part, since the reasoning does not change (perhaps surpris-
ingly).

(c) Now fix n = 8, k = 4. Is the probability that 0000 appears in the circle equal to the probability
that 0011 appears?
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Solution.

This can be reasoned out by counting the strings in each case.

For 0000, there is one string that contains 8 copies, 00000000. The rest of the strings containing
0000 can be ordered by the number of copies of 0000 that they contain; each one can also have the
long string of 0’s begin at any of the 8 positions:

1 string 00000000 (8 copies)
8 strings 00000001 (4 copies)
8 strings 00000011 (3 copies)

16 strings 000001x1 (2 copies)
32 strings 00001xx1 (1 copy)

Thus, in total, 65 of the 256 possible strings contain a copy of 0000. (Note that there are 128 copies
in total; this agrees with the expectation of n

2k
multiplied by the number of possible strings, 2n).

So the probability of a random string containing a copy of 0000 is

65
256

For 0011, we get the following:

4 strings 00110011 (2 copies)
120 strings 0011xxxx (1 copy)

The number of strings with one copy is a bit complex; the 0011 sequence can start in any of 8
places, and the other four characters can be any of the 16 possibilities except 0011. Altogether, 124
of the 256 possible strings contain a copy of 0000. (Note that there are again 128 copies in total).
The probability of a random string containing a copy of 0011 is

124
256

Thus, the probability is not the same; it is significantly more likely that a substring of 0011 will
appear.

(d) Justify your answer for the previous part. If your answers in the previous parts seem to be
“contradictory”, explain.

Solution.

Although the expectations are the same, the extra overlapping possibilities for 0000 make the
conditional probability of a second occurrence, conditioned on a first occurrence, higher than it is
for 0011. Since it is more likely that there will be a second occurrence, the expectation must be
composed of less situations in which the target string occurs at all.

Problem 6 Suppose that you choose a listing (permutation) of the numbers 1, 2, . . . , n uniformly
at random. What is the expected number of entries that are greater than all entries that follow
them? For example, in the listing 4, 2, 5, 1, 3, the numbers 3 and 5 are greater than all following
entries. (Hint: Try using indicator variables).
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Solution.

Let Xi be an indicator for the event that the i-th entry is greater than the following n− i entries.
Since the indicator random variables are 1 when the event occurs and 0 when it does not, E [Xi] =
Pr(Xi = 1), as we have seen. By linearity of expectation,

E [X1 +X2 + . . .+Xn] =
n∑
i=1

E [Xi]

=
n∑
i=1

Pr(Xi = 1)

All that remains is to compute Pr(Xi = 1). Note that no matter what the last n−i+1 numbers are,
each of the last n− i+ 1 entries is equally likely to be the largest. Therefore, Pr(Xi = 1) = 1

n−i+1 .
Substituting into the equation above gives:

E [# new maxima] =
n∑
i=1

Pr(Xi = 1)

=
n∑
i=1

1
n− i+ 1

=
n∑
i=1

1
i

= Hn

Problem 7 Every day in Boston, a rainstorm occurs with probability 1/3 (independently of any
other day). Each day it rains, the radar system at the Nashua airport breaks with probability 1/25.
The system never breaks on fair days.

(a) Assuming that the radar was working yesterday (but may break today, if it happens to rain),
how many days can we expect the Nashua radar system to work correctly before it next breaks?

Solution.

This can be done with a simple recurrence:

w =
2
3

(1 + w) +
1
3

(
24
25

(1 + w))

w =
2
3

+
2
3
w +

8
25

+
8
25
w

1
75
w =

74
75

w = 74

Notice that in this case, we could have tried to predict the expected time the system will work
as simply 1

p , where p is the probability of failure on any given day, because it never breaks on
non-rainy days. However, this would technically be off by 1, since it counts the day that the system
breaks as well.
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(b) Optional question: Suppose that the first time the radar system breaks (on a rainy day with
probability 1/25), it is only patched-up with a quick hack to keep it working. (As a computer
science student, you should be able to relate to this). After being patched-up, it will fail on future
rainy days with probability 1/10, after which the system will need major repairs. Calculate the
expected number of days until the radar system needs major repairs. Solution.

w =
2
3

(1 + w) +
1
3

(
24
25

(1 + w) +
1
25

(1 + v))

v =
2
3

(1 + v) +
1
3

(
9
10

(1 + v))

v =
2
3

+
2
3
v +

3
10

+
3
10
v

1
30
v =

29
30

v = 29

w =
2
3

(1 + w) +
1
3

(
24
25

(1 + w) +
1
25

(30))

w =
2
3

+
2
3
w +

8
25

+
8
25
w +

30
75

1
75
w =

104
75

w = 104

Although you could have also seen these as independent events that occur sequentially. The first
breakage is expected on day 1/ 1

75 , and the second is expected on day 1/ 1
30 . Thus, we expect their

sum to be 75 + 30 = 105, by linearity of expectation. Depending on how you interpret the day on
which it needs the repairs, this gives either 104 or 105 days.

Problem 8 Suppose that R is a random variable. Let E be an event. The conditional expectation
of R given that event E occurs is denoted E [R | E] and is defined to be

E [R | E] =
∑

x∈range(R)

x · Pr(R = x | E)

(a) Suppose I flip a fair coin 4 times. Compute the expected number of heads, given that all 4
values are not the same.

Solution.

Let the random variable R be the number of heads, and let E be the event that not all flips are
the same.

E [R | E] =
4∑

x=1

Pr(R = x | E)(x)

= 0(0) +
4
14

(1) +
6
14

(2) +
4
14

(3) + 0(4)

= 2
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(b) Compute the expected value of the number rolled on a fair, 6-sided die, given that the outcome
is prime.

Solution.

Define R as the number rolled and E as the event that a prime number is rolled.

E [R | E] =
6∑

x=1

x · Pr(R = x | E)

= 0 · (1) +
1
3
· (2) +

1
3
· (3) + 0 · (4) +

1
3
· (5) + 0 · (6)

=
10
3

(c) Prove the following identity, assuming that all expectations exist.

E [R] = Pr(E) · E [R | E] + Pr(E) · E
[
R | E

]
Solution.

We transform the right side into the left side. All summations are over x ∈ Range(R).

Pr(E) · E [R | E] + Pr(E) · E
[
R | E

]
= Pr(E) ·

(∑
x

x · Pr(R = x | E)

)
+ Pr(E) ·

(∑
x

x · Pr(R = x | E)

)

= Pr(E) ·

(∑
x

x · Pr(R = x ∩ E)
Pr(E)

)
+ Pr(E) ·

(∑
x

x · Pr(R = x ∩ E)
Pr(E)

)
=

∑
x

x ·
(
Pr(R = x ∩ E) + Pr(R = x ∩ E)

)
=

∑
x

x ·
(
Pr((R = x ∩ E) ∪ (R = x ∩ E))

)
=

∑
x

x · Pr(R = x)

= E [R]

The first step uses the definition of conditional expectation. The second step uses the definition
of conditional probability. The third step is simplification. The fourth step uses the fact that the
probability of a disjoint union of events is equal to the sum of the event probabilities. The fifth
step is simplification, and the final step uses the definition of expected value.

(d) Optional problem: Suppose you are playing poker. You have the following chart of payoffs:

One Pair : $10
Two Pair : $15

Three of a Kind : $30
Full House : $60

All else : $0
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Calculate the expected amount of money you will make on a hand, given that the first two cards
you are dealt are both Jacks.

Solution.

Note that
(

50
3

)
= 19600, the total number of possible hands given that the first two are Jacks. We

can compute the probabilities by counting:

For Two Pair, we have to choose the rank of the second pair, out of the 12 choices (besides Jacks).
We then must choose 2 of the 4 suits. The last card can be any of the remaining 44 that don’t
match the pairs.

For Four of a Kind, we can only choose the last card out of the remaining 48.

For Three of a Kind, we can choose either of the remaining two Jacks and are then free to choose
the last two cards out of any of the 48 non-Jacks.

For a Full House, we can choose any of the 12 non-Jack ranks for the triplet and any 3 of the 4
cards in that rank.

Two Pair, finally, can either be calculated as the remaining hands, since it is the ‘default’, or as
choosing 3 of the 12 non-Jack suits and 1 of the 4 cards in each.

(There are many ways to calculate any of these figures, depending on how you look at them.)

Two Pair : 12 ·
(

4
2

)
· 44 = 3168 −→ 3168

19600
Four of a Kind : 48

Three of a Kind : 2 ·
(

48
2

)
+ 48 = 2304 −→ 2304

19600

Full House : 12 ·
(

4
3

)
= 48 −→ 48

19600

One Pair :
(

50
3

)
− 3168− 2304− 48 = 14080 −→ 14080

19600

The problem changes slightly if you did not count Four of a Kind as a valid Three Pair, but by the
payoffs given that is the optimal thing to do.

We thus get as the expectation:

14080
19600

(10) +
3168
19600

(15) +
2304
19600

(30) +
48

19600
(60) = $13.28


