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Expectation and Variance: Further Notes

1 Real-valued Random Variables

A real-valued random variable over a probability space, S, is a function from S to the real numbers.
We restrict attention to discrete spaces S.

The probability density function (pdf) of a random variable, R, is the function fr : R — R defined
as:

fr(r) = Z Pr{s}.
{s|R(s)=r}
The cumulative density function of R is the function Fg : R — R defined as:

Fr(r)= ) Pr{s}= > Fr(r).

{s|R(s)<r} {r'€range(R)|r'<r}

When several random variables are mentioned in the same context, we tacitly assume they are
defined on the same probability space.

2 Expectation

Definition. The expectation, E [R], of a random variable R, is
E[R] =) R(s)Pr{s},
SES

providing this sum has a well-defined limit.

Absolute convergence of the sum on the right is necessary and sufficient for the expectation to have
a well-defined finite value. Another way to say this is that E [R] is finite iff E [|R|] is finite.

A variable may also have a well-defined infinite or negative infinite value. For example, a random
variable taking the value —2" with probability 27" for all n > 0, has expectation —oco. On the
other hand, an random variable taking the values 2" and —2", each with probability 27" /2 for
n > 0 does not have a well-defined expectation.

The next lemma gives an alternative formulation of expectation that many texts take as its defini-
tion. This formulation shows that the expectation of a random variable depends only on the pdf
of the variable rather than on the behaviour of the variable on individual sample points.

Lemma 2.1.

E[Rl= Y  rPr{R=r}.

réerange(R)
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The equality above holds in the strong sense that the expectation is well-defined iff the series on
the right has a well-defined limit.

Proof. Let [R = r| denote the event that R = r. We leave it to the reader to verify that if any
of the sums in the following derivation are well-defined, then they all are:

Z T-Pr{R:r}:Zr- Z Pr{s}

rerange(R) T s€[R=r]
= Z Z [r-Pr{s}]
T s€[R=r]
=Y Y [R(s)-Pr{s}]
T s€[R=r]
= ZR s) - Pr{s}
seS

The last equality follows from the fact that the events [R = r| for r € range(R) are a partition of
the sample space S. [ |

It follows easily from the definition that
E[aR+b] =aE[R]+ b
for any a,b € R.

Theorem 2.2. [Linearity of Expectation] Let Ry, Ry, ... , be random variables such that
oo
> E[IRi]
1=0

converges. Then

1=0

= E[R)].
=0

Proof. We leave it to the reader to verify that, under the given convergence hypothesis, all
the sums in the following derivation are absolutely convergent, which justifies rearranging them as
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follows::
Y E[R] =YY [Ri(s) Pr{s}
=0 1=0 s€S
= 3" S (Rils) - Pr{s}
seS =0
= ZRi(S) Pr{s}
seS Li=0
= ZRi (s)| -Pr{s}
seS =0
=0

Corollary 2.3. [Finite Linearity of Ezpectation] Let Ry, R1, ..., Ry, be random variables with finite
expectations. Then

E

Y R;| =) E[Ry].
1=0 1=0

Proof. Since E [R;] is finite, so is E[|R;|], and therefore so is their sum for 0 < i < n. Hence the
convergence hypothesis of Theorem 2.2 is trivially satisfied. [

Exercise: Show that linearity of expectation fails for the sum of two variables, one with expectation
400 and the other with —oo.

2.1 A Paradox

One of the simplest casino bets is on “red” or “black” at the roulette table. In each play at roulette,
a small ball is set spinning around a roulette wheel until it lands in a red, black, or green colored
slot. The payoff for a bet on red or black matches the bet; for example, if you bet $10 on red and
the ball lands in a red slot, you get back your original $10 bet plus another matching $10.

In the US, a roulette wheel has two green slots among 18 black and 18 red slots, so the probability
of red is p = 18/38 ~ 0.473. In Europe, where roulette wheels have only one green slot, the odds
for red are a little better —that is, p = 18/37 = 0.486—Dbut still less than even. To make the game
fair, we might agree to ignore green, so that p = 1/2.

There is a notorious gambling strategy which seems to guarantee a profit at roulette: bet $10 on
red, and keep doubling the bet until a red comes up. This strategy implies that a player will leave
the game as a net winner of $10 as soon as the red first appears. Of course the player may need an
awfully large bankroll to avoid going bankrupt before red shows up—but we know that the mean
time until a red occurs is 1/p, so it seems possible that a moderate bankroll might actually work
out. (In this setting, a “win” on red corresponds to a “failure” in a mean-time-to-failure situation,
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cf. Lecture 22 Notes.) In any case, we won’t worry about bankruptcy and will assume we can keep
doubling our bets indefinitely until a red comes up.

Suppose we have the good fortune to gamble against a fair roulette wheel. In this case, our expected
win on any spin is zero, since at the ith spin we are equally likely to win or lose 10 - 2¢ dollars.
So our expected win after any finite number of spins remains zero, and therefore our expected win
using this gambling strategy is zero. This is just what we should have anticipated in a fair game.

But wait a minute. As long as there is a fixed, positive probability of red appearing on each spin
of the wheel—even if the wheel is unfair—it’s certain that red will eventually come up. So with
probability one, we leave the casino having won $10, and our expected dollar win is obviously $10,
not zero!

Something’s wrong here. What?

3 Variance

For random variable R with mean u,
Var [R] =E [(R - p)’].

It follows from linearity of expectation, that

Var [R] = E [R?] - E*[R],
as the reader can verify.
Lemma 3.1. For any a,b € R,

Var [aR + b] = a*Var [R] .
Proof. Let u=E[R], so E[aR+b] = ap+ b. Then

Var[aR+b] = E[((aR+b)— (au+b))?]
= E[(aR - ap)?]
= a’E[(R - p)?]

= a?Var[R].
]
Lemma 3.2. If X,Y are independent,
E[XY] = E[X]E[Y],
Var[X +Y] = Var[X]+ Var[Y].
Proof. See F97 Lecture 24 Notes. ]

The standard deviation, sometimes just called the deviation, of a random variable is the square root
of its variance. Sometimes it’s more convenient to work with the deviation than with the variance.
The deviation is often denoted by the symbol ¢ and the variance by 2.
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4 Markov and Chebyshev Bounds

4.1 Review

The theorems of Markov and Chebyshev give upper bounds on the probability that a random
variable differs by a given amount from its mean. The Markov bound holds solely under the
hypothesis that the variable is nonnegative and the expectation exists, i.e., is finite. The Chebyshev
bound holds solely under the hypothesis that the variance exists. (Remember that the variance
can exist only if the expectation does.)

Theorem 4.1. [Markov’s Bound] If R is a non-negative random wvariable with finite expectation,
then for all x > 0,
E
Pr{R > o} < 2
z

Setting z = ¢ - E[R] allows Markov’s Theorem to be expressed in an alternate form:

Corollary 4.2. If R is a non-negative random variable with finite expectation, then for all ¢ > 0

Pr{RZc-E[R]}S%

Theorem 4.3. [Chebyshev’s Bound] Let R be a random wvariable with finite variance, and let x be
a positive real number. Then
Pr{|R B[R] >z} < V2

4.2 The Weak Law of Large Numbers

The intuition behind the definition of expectation is that the average of a large number of random
samples of a variable will be close to the expectation of the variable. This will happen even if the
random variable never actually takes a value close to its expectation. Using Chebyshev’s Theorem
and the facts about variance and expectation, we are finally in a position to be more precise about
this intuitive idea.

For example, suppose we want to estimate the fraction of the U.S. voting population who favor Al
Gore over all other year 2000 presidential hopefuls. Let p be this unknown fraction. Let’s suppose
we have some random process—say throwing darts at voter registration lists—which will yield each
voter with equal probability. Now we can define a Bernoulli variable, G, by the rule that G =1 if
a random voter most prefers Gore, and G = 0 otherwise. In this case, G = G2, so

B[] =B[6]=Pr{G=1}=p,
and

Var [G] = E [G2] —E? [G] =p—p?=p(1-p).

To estimate p, we take a large number, n, of sample voters and count the fraction who favor Gore.
We can describe this estimation as taking independent Bernoulli variables Gi,Gs,...,G,, each
with the same expectation as G, computing their sum

n
Sn=_Gi,
=1



6 Handout 45: Expectation and Variance: Further Notes

and then using the average S,,/n as our estimate of p.

This estimate Sy, /n is a random variable with two critical properties:

E[&] - B[q],

n
Var [&] _ Var [G]
n n

To prove this, note that by linearity of expectation

. [&] _ BN Gl Y BIG _ nEIG] g

n n n

Also, by Lemma 3.2, since the G;’s are independent, the variances will add, so

Var [%] _ (%>2Var[5n] by Lemma 3.1,
_ (%>2§;Va,r[Gz]
_ (%>2nVa,r[G]
_ Var[@)

Now Chebyshev’s Bound tells us that

Theorem 4.4. Let S, = Y i | G; where G1,...,Gy, are mutually independent variables with the
same mean, u, and deviation, o. Then
} 1 /0\2
n\z

Pr{

This theorem finally provides a precise statement about how the average of independent samples
of a random variable approaches the mean. It generalizes to many cases when S,, is the sum of
independent variables whose mean and deviation are not necessarily all the same, though we shall
not develop such generalizations here.

Sn

T H
n

A simple consequence of Theorem 4.4 is The Weak Law of Large Numbers. Let’s first rename x
to be e—the traditional symbol for a small positive quantity. Then, with € fixed, we can always
choose n large enough to ensure that, with probability as close to one as desired, the average of n
samples is within € of the actual average. We can state this as a limit theorem:

Theorem 4.5. [Weak Law of Large Numbers] Let S, = > i | G; where G1,...,Gy are mutually
independent variables with the same mean and variance. For any € > 0,

lim Pr{&—E & 26}:0,

n—00

or equivalently,

n—oo

limPr{&—E & <6}: ,
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This Weak Law of Large Numbers serves as a helpful reminder of how to formulate estimation of
the mean by average sampling. It is the most elementary of many such theorems. However, the
Weak Law as it stands has no actual applications—first because it does not say anything about the
rate at which the limits are approached (rate information is essential in applications), and second,
because it provides no information about the way the value of the average may be expected to
oscillate in the course of an experiment. There is a Strong Law of Large Numbers which deals with
the oscillations. Such oscillations may not be important in our example of polling about Gore’s
popularity, but they are critical in gambling situations, where large oscillations can bankrupt a
player, even though the player’s average winnings are assured if he survives long enough. The
problem here with the long run view, as the famous economist Keynes is alleged to have remarked,
is that “In the long run, we are all dead.”

4.3 Size of a Poll

Chebyshev’s Theorem 4.4 allows us to calculate how many voters to poll if we want to get a reliable
estimate of voters’ preference for Gore.

Suppose, in particular, we want to know within 0.02 what fraction of the voters favor Gore. So we
let z = 1/50 and conclude from Theorem 4.4 that we can, by choosing n large enough, reduce the
probability that our estimate is off by more than +0.02 to as close to zero as we please.

For example, suppose further that we want to be within 0.02 of p with probability 0.95—mninety-five
per cent “confidence level” is a standard used in many statistical applications. Then we choose n
so that Var [G] /nz? <1 —0.95. That is, we want

n > 20Var [G] 502 = 50, 000p(1 — p).

Solving for the sample size n in terms of the unknown p that we are trying to estimate in the first
place may not seem to be making progress. But it’s easy to see that the maximum value of p(1 —p)
in the interval 0 < p < 1 occurs at p = 1/2, so we conclude that if we sample

n > 50,000(1 — 1/2)1/2 = 12,500

voters, we can say that 95% of the time, our estimate Si2500/12,500 will be within 0.02 of the
fraction of voters who favor Gore.

Note that this bound on poll size holds regardless of how large the total voting population may
be—whether we are trying to determine the preferences of a few tens of thousands of Cambridge
voters, or of the tens of millions of all American voters, the same poll size is adequate.

Now suppose a pollster dutifully checks with 12,500 randomly chosen voters and finds that 6,300
prefer Gore. It’s tempting, but sloppy, to say that this means “With probability 0.95, the fraction
of voters who prefer Gore is 0.504 + 0.02.” What’s objectionable about this statement is that it
talks about the probability of a real world fact, namely the actual value of the fraction p. But p
is what it is, and it simply makes no sense to talk about the probability that it is something else.
For example, suppose p is actually 0.53; then it’s nonsense to ask about the probability that it is
within 0.02 of 0.504—it simply isn’t.

A more careful summary of what we have accomplished would be that we have described a prob-
abilistic procedure for estimating the actual value of the fraction p, and the probability that our
estimation procedure yields a value within 0.02 is 0.95. This is a bit of a mouthful, so special phras-
ing closer to the sloppy language is commonly used. The pollster would describe his conclusion by
saying that “At the 95% confidence level, the fraction of voters who prefer Gore is 0.504 + 0.02.”
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By the way, polling 12,500 voters is wildly excessive. We derived this bound on poll size solely
by applying Chebyshev’s Theorem to value of the variance of S,/n. But in fact we know the
exact distribution of S,/n, namely, it has a binomial distribution with parameters n,p. By a
more detailed calculation of probabilities of deviation from the mean specifically for the binomial
distribution (cf. Lecture 21 Notes), we can show that the poll size could be more than an order of
magnitude smaller than 12,500.



