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Mini-Quiz 11

1.  Write your name:

2. (Rosen, Section 4.4, Exercise 13) What is the probability that a five card poker hand
contains at least one ace?

Solution.
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Tutorial 11 Problems

Problem 1 Statistical Mechanics studies the behavior of large systems of particles (such
as a kettle of boiling water). One of the most basic physical systems is a gas: a collection of
particles (electrons, atoms, photons) floating around in a large container.

One way to describe this system is to divide the container into lots of tiny boxes. The “state”
of the system says how the particles are distributed among the tiny boxes. The system is
equally likely to be in any one of its states (assuming they all have the same energy, but
discussing this would take us too far afield). Many facts about the aggregate behavior of the
system arise from averaging over all its possible states.

It turns out that different kinds of particles exhibit different kinds of aggregate behavior.
These differences can be explained by different assumptions about the system states.

(a) The Mazwell-Boltzmann model assumes that the particles are distinguishable, say, num-
bered 1,2,.... A state is described by where particle 1 is, where particle 2 is, and so on. In
the Maxwell-Boltzmann model, a single particle is equally likely to be in any one of the tiny
boxes, independently of where the other particles are. Nature follows these rules when all
the particles are distinguishable (e.g., different atoms).

Suppose that there are r particles in the container and n tiny boxes. How many possible
states are there under the Maxwell-Boltzmann model?

Solution.

Each of the r particles can be in any of the n boxes, so

n’l"

g

(b) On the other hand, the Bose-FEinstein model assumes that the particles are indistin-
guishable. A state is described by the number of particles appearing in each tiny box. In the
Bose-Einstein model, all the distributions of numbers of particles in tiny boxes are equally
likely. Gases made up of photons obey this model.

How many possible states are there under the Bose-Einstein model?
Solution.

+r—1
)

Balls in bins, stars and bars.
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(c) There is another variation of models for particle system behavior. The Fermi-Dirac
model assumes that the particles are indistinguishable, but that no two particles can occupy
the same box. (This is known as the Pauli exclusion principle.)

How many possible states are there under the Fermi-Dirac model?
Solution.

The configurations are simply determined by which r of the n boxes are occupied, so
n
T

g

(d) The Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac models predict very different
aggregate system behavior. For example, suppose r/n = X is the average number of particles
per box.

Prove that in the Maxwell-Boltzmann model, the probability of a given box being empty is
about

Assume that n is very large.
Solution.
The probability that a given box is empty is just (1 — %)’ Using the approximation (1— %) ~

e n (valid for large n), this yields approximately e”» = e~*. This probability should be

close to the fraction of empty boxes.

g

(e) Prove that under Bose-Einstein Statistics, the probability of a given box being empty
is about

Again, assume n is very large.
Solution.

The probability that a given box is empty is just the ratio of the number of states in which
that box is empty to the total number of states. The total number of states is (”J’:_l). The
number of states in which the given box is empty is the same as the number of states for
a system with n — 1 tiny boxes and r particles, namely, ("*7"?). The ratio works out to

1
n—1 _ 1=
ntr—1 — 14+L—

. . P . 1
T. Since we assume 7 is very large, this is approximately T4z a8 needed.
O

n
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(f) Under Fermi-Dirac Statistics, what is the probability of a given box being empty?
Solution.

This is simply the probability that the box is not one of the r filled boxes, so

LA R B
n n

g

(g) It turns out that the Fermi-Dirac model holds for electrons, protons, and other “solid”
particles called fermions; they follow the aptly-named Fermi distribution. The Bose-Einstein
model holds for photons and phonons and other particles that can effectively interpenetrate.
These are called bosons and follow the resulting Bose distribution.

In ‘classical’ non-quantum-mechanical situations, however, both of these models approach
the Maxwell-Boltzmann model. In this case, ‘classical’ means “high energy,” which equates
to a small A. When X\ is large, 1 — A < e™* < 1%\ In other words, Maxwell-Boltzmann
predicts a less spread-out gas than you would actually find for fermions, and a more spread-
out gas than you would actually find for bosons. But as A decreases, these differences become

less significant.

Show that for very small A, the probability of a box being empty is approximately the same
for all three models.

Solution.

A

For Boltzman distribution, e * is approximately (1 — A) for small A, as used in the above

solution.

The Bose distribution produces
to be 1+ (—=X).

The Fermi distribution directly predicts a probability of (1 — ).

1 . . . .
75> Which a Taylor series expansion around 0 easily shows

A note on the Taylor series expansion: This is a useful tool for mathematical approximations,
especially in physics. It lets you generate a polynomial approximation of a function near a
particular point to arbitrary accuracy. The basic expansion for f(z) around a point « is:

f@) = f@) + DD ooy ¢ T gy o T

(z—a) + ...

It is easy to see that the first two terms form a linear approximation of the original function
based on its value at z = a.

For values of z close to «, the higher-order terms are not significant, since (z — «) is small.
In fact, the error in truncating the summation at the n'* term (of degree (n—1)) is less than
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for some 7y between « and z.

)

around z = 0, is somewhat simpler:

f"(0) f"(0)
TR

An expansion for “small values,’

fl@) = f(0) + f(0)-= + 2t 4+

The error in ending this summation at the n** term is less than

()
‘f (0) _,yn‘

n!

for some 7y between 0 and z.

0

Interestingly, the Fermi-Dirac model implies that gases made up of just one atom behave
differently than gases made up of more than one atom. In particular, the entropy of a gas, a
physically measurable quantity, depends on the number of states. This fact is supported by
experiment.
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Problem 2 The Probabilistic Method

A round robin tournament of n contestants is one in which each of the (g) pairs of contestants
play each other exactly once, with the outcome of any play being that one of the contestants
wins and the other loses. For a fixed integer k, k < n, a question of interest is whether it is
possible that the tournament outcome is such that for every set of £ players there is a player
who beat each player of this set. Show that if:

() -6)

then such an outcome is possible.

n—k
<1

(a) Start by numbering the sets of k£ contestants. How many such sets are there?

Solution.

(b) Let B; be the event that no contestant beat all the & contestants in set i. Compute
Pr(B;). (Note that you must choose probabilities for each match in order to compute this).

Solution.

Suppose that the results of the game are independent and that each game is equally likely
to be won by either contestant. This is an arbitrary choice, but it is easy to work with (and
any probability will suffice to prove existance). The probability that a person inside group i
beats everyone in i is clearly 0. The probability that a person outside group ¢ beats everyone
in i is (%)k, so the probability the person they did not beat everyone in i is 1 — (%)k There
are n — k people outside of group ¢. Thus, B; has probability

()

O

n—k

(c) Give an upper bound on Pr(UB;).
Solution.

Then use Boole’s inequality to bound: Pr(UB;) < >  Pr(B;). In other words, Pr(UB;) can be
no greater than if all of the B; are disjoint. (Overlap will merely reduce the total probability



6 Handout 39: Tutorial 11 Problems

of the union). Since the expression for B; does not depend on i — the probability is the same
for each k-sized group ¢ — the sum of all of the B; is simply

D]-0)]

O

n—k

(d) Explain why this result can be used to prove the existence of the desired tournament
outcome.

Solution.

Probabilistic proof. If the overall probability of UB; is less than 1 then there must be an
occurrence that is not in UB;. It does not matter that we chose the probabilities arbitrarily;
the fact that there is any probaility at all left over means some outcome that we had not
accounted for is possible.

For interest, some numbers that work are:
k=1n=3k=2n=21;k=3,n=233;k =4,n = 46;
k=5n=5%k=6n=T72k=7T,n=285k=8n=98

O




