
Massachusetts Institute of Technology Handout 33
6.042J/18.062J: Mathematics for Computer Science April 7, 2000
Professors David Karger and Nancy Lynch

Mini-Quiz 9

1. Write your name:

2. (Rosen, Section 1.7, Problem 35) Show that if A is an uncountable set and A ⊆ B,
then B is uncountable.

Massachusetts Institute of Technology Handout 33
6.042J/18.062J: Mathematics for Computer Science April 7, 2000
Professors David Karger and Nancy Lynch

Tutorial 9 Problems

Problem 1

(a) How many ways can 2n people be divided into n pairs?

Solution.

(2n)!/n!2n.

Consider all the ways of ordering the 2n people in a line. There are (2n)! ways of doing
this. Now group them into pairs based on the linear order, i.e. group the first and second
persons, group the third and fourth persons,..., group the (2n−1)th and 2nth persons. Thus
each linear order gives us a unique grouping into pairs. But observe that two different linear
orders could give rise to the same grouping into pairs. So let us now count the number of
linear orders that give rise to the same grouping into pairs. Given a grouping into pairs, to
generate a linear order we need to order each pair (there are 2n ways to do this) and then
order the n pairs (there are n! ways to do this). Hence n!2n linear orders give the same
grouping into pairs. Thus the total number of ways 2n people can be divided into n pairs is
(2n)!/n!2n.

�

(b) How many ways can you choose n out of 2n objects, given that n of the 2n objects are
identical?

Solution.

The answer is 2n, since you can pick any subset from the n nonidentical objects, and make
up the rest with the identical ones. And the number of subsets of n different objects is 2n.

�

Problem 2 Calculate the number of ways to place 11 indistinguishable balls in four dis-
tinguishable boxes so that each box contains at least one, but no more than four, balls.

Solution.

First place one ball in each box. Then we must distribute 7 balls in four boxes in such a way
that no more than three balls are in the same box.

We use inclusion/exclusion

Number of ways to place 7 balls in 4 boxes:
(

7+4−1
7

)
=
(

10
7

)
.

2 Handout 33: Tutorial 9 Problems

Number of ways to place 7 balls in 4 boxes such that there are four balls in a box = number
of ways to choose box with four balls * number of ways to place remaining three balls in
remaining three boxes = 4 ·

(
5
3

)
.

Number of ways to place 7 balls in 4 boxes such that there are five balls in a box = 4 ·
(

4
2

)
.

Number of ways to place 7 balls in 4 boxes such that there are six balls in a box = 4 ·
(

3
1

)
.

Number of ways to place 7 balls in 4 boxes such there are seven balls in a box = 4.

So the total number of ways is(
10
7

)
− 4

((
5
3

)
+
(

4
2

)
+
(

3
1

)
+ 1
)

= 40

�

Problem 3 In this problem we will prove the remarkable fact that there exist mathematical
functions that computers, no matter how powerful, simply cannot compute. We will do this
through countability arguments.

(a) Show that the set of finite length binary strings is countable.

Solution.

Let Bn denote the set of binary strings of length n. This set has exactly 2n elements.
Therefore the set of finite length binary strings B =

⋃
n∈NBn is a union of countable number

of finite sets. We know from Lecture 13 that such union is countable.

Namely, one can easily list all elements of B by first listing the elements of B1, then the
elements of B2, then the elements of B3, etc,. We can do this since each set Bi has a finite
number of elements.

�

(b) From your answer to the previous part, what can you conclude about the countability
of the set of all computer programs?

Solution.

Since every computer program can be represented as a finite string of bits (e.g. machine
language code), it follows that the set of all computer programs is countable.

Namely, the mapping which represents computer programs as finite strings of bits is an
injection. Hence there is a surjection from the set of finite strings of bits to the set of
computer programs. From (a) we know that there is a surjection from the set of natural
numbers to the set of finite strings of bits. By transitivity of surjective mapping, there is a
surjection between natural numbers and computer programs. Hence the set of all comptuer
programs is countable.

�

(c) Show that the set of infinite length binary strings is uncountable.

Handout 33: Tutorial 9 Problems 3

Solution.

We construct a bijection from the set of infinite length binary strings to the power set of the
natural numbers. Since the power set of the natural numbers is uncountable, it will then
follow that the set of all infinite length binary strings is uncountable.

We need to associate a subset of the naturals with each infinite length binary string. Let
b = b0b1b2b3 . . . be an infinite length binary string (here each bi ∈ {0, 1}). We associate with
this string the set f(b) = S = {i | bi = 1}. That is, we include i in S = f(b) if and only if
the i-th bit position (from the left) of b is 1. Such mapping f is a bijection: It is an injection
because if two infinite length binary strings are different, then clearly they map to different
subsets. Furthermore, it is a surjection because for every subset S ⊂ N, there is a binary
string b s.t. f(b) = S, namely b = b0b1b2b3 . . . where bi is defined as 0 if i 6∈ S and 1 if i ∈ S.

Alternative Solution: One can also show that the set B′ is uncountable directly by a
diagonalization argument.

Assume B′ is countable and let b(1), b(2), b(3), b(4), ... be a list of all elements of B′. By
diagonalization, we will construct an element b = b0b1b2b3... ∈ B′ s.t. b 6= b(i) for all i ∈ N
as follows: j-th bit of b is defined as the opposite of the j-th bit of string b(j). Obviously,
so defined b is not equal to any b(i) from the list because for every i, the i-th bit of b(i)

is different than the i-th bit of b. Therefore, the list b(1), b(2), b(3), b(4), ... is not a list of all
elements in B′, and thus the assumption that B′ is countable leads to a contradiction.

�

(d) A function is a decision function if it maps finite length bit strings into the range {0, 1}.
Let F be the set consisting of all possible decision functions. Show that set F is uncountable.

Solution.

From part (a), we know that there is a bijection from the set of all finite length bit strings
to the set of natural numbers, hence we can think of decision functions as mapping natural
numbers to single bits.

It is an easy bijection between a set of such mappings and a power set of the natural numbers.
Namely, we associate with a decision function f a set S = {i ∈ N s.t. f(i) = 1}. Clearly,
this is an injection and a surjection. Therefore, since the power set of the set of natural
numbers is uncountable then so is the set of decision functions.

Alternative Solution: We can give a bijection between the set of all decision functions
and the set of all infinite length bit strings, which by part (c), implies that the set of decision
functions is uncountable. Let f be a decision function. We map f to an infinite length string
as follows. We set bit i of the string to be f(i). That is, our infinite length bit string will
be f(1)f(2)f(3) Now, observe that this mapping is a bijection. In particular, suppose
we have two different decision functions f and g. Since they are different, they must give a
different output on some particular input. Suppose that this particular input is the number j.
That is, f(j) 6= g(j). Then, the corresponding infinite length binary strings will differ in the
j−th position. This shows that the function is injective. Now, if we have an infinite length bit
string b0b1b2 . . . , then a decision function f defined as f(0) = b0, f(1) = b1, f(2) = b2, . . . ,

4 Handout 33: Tutorial 9 Problems

will be mapped to that string. Therefore, the mapping function is surjective. Since it’s
injective and surjective, it must be bijective. Alternative Solution 2:

Some students gave a diagonalization argument for why F is uncountable: Assume otherwise
and let {f1, f2, f3, ...} be the list of all elements of F . From part (a) we know that B, the
set of all finite length binary strings is countable, so there must exist a bijection g : B → N.
Now, define a decision function f : B → {0, 1} as follows:

f(s) = the opposite of fg(s)(s)

Then f is different from all fi’s because for all i ∈ N, h differs from fi on string s = g−1(i).

Alternative Solution 3:

One can also argue, as some students did, that F is uncountable by showing the bijection
between F and the set, P (B), of all subsets of B. The bijection associates with f ∈ F a set
of strings b ∈ B s.t. f(b) = 1. Then, since by part (a) there is a bijection between B and
N, there must be a bijection between P (B) and P (N). By transitivity of bijective relation
between sets, there is a bijection then between F and P (N). Hence F is uncountable.

�

(e) A function is computable if there is a computer program that computes it. From your
answers to the previous parts, prove that there is a decision function that is not computable.

Solution.

Since there are only countably many computer programs, but uncountably many decision
functions, there can be no surjection from the set of computer programs to the set of decision
functions (In fact, this means that there is more decision functions than computer programs).
In particular, if we associate a computer program to a decision function which this program
is computing1, this association is not a surjection either. Therefore there must be some
decision function which is not computed by any computer program.

�

1If a program is not computing any decision function, associate it with a trivial decision function f(b) = 0,
for all finite bit strings b.

