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Problem Set 7 Solutions

Problems:

Problem 1 Let (z;,y;), 1 = 1,2,3,4,5 be a set of five distinct points in the plane with integer
coordinates. Show that the midpoint of the line segment joining at least one pair of these points
has integer coordinates.

Solution. The midpoint of the segment whose endpoints are (a,b) and (c,d) is (%5<, #) Clearly
the coordinates of these fractions will be integers as well if and only if ¢ and ¢ share parity (both odd
or even) and b and d also share parity. Thus, there are four possible pairs of parities: (odd,odd),
(odd,even), (even,odd), (even,even). Since we are given five points, the pigeonhole principle guar-
antees that at least two of them will have the same pair of parities; therefore, the midpoint of the
line segment joining those two points will have integral coordinates.

Problem 2 Divisibility

(a) Show that in any set of n + 1 positive integers not exceeding 2n there must be two that are
relatively prime.!

(b) Problem removed

Solution. Partition the set of numbers from 1 to 2n into the n pigeonholes {1,2},{3,4},... ,{2n—
1,2n}. If we have n + 1 numbers from this set (the pigeons), then two of them must be in the
same hole. This means that among our collection are two consecutive numbers. Clearly consecutive
numbers are relatively prime (since every common divisor must divide their difference, 1).

Problem 3 Problem removed

Problem 4 Jelly beans of 8 different colors are in 6 jars. There are 20 jelly beans of each color.
Use the pigeonhole principle to prove that there is some jar that contains at least two beans each
from two different colors of jelly beans.

Solution. There are 20 beans of each color. Since there are 6 jars, by the strong pigeonhole
principle for each color there is a jar containing at least 20/6 > 2 beans of that color. Since the
number of colors is greater then the number of jars, using the pigeonhole principle again, there
must be a jar containing two pairs of jelly beans from two different colors of jelly beans.

'If integers a and b are relatively prime, then they do not share any factors; i.e., for ¢ € N, c|a and c|b implies that
c=1.
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Problem 5 Fourteen hackers and eight theoreticians are on the faculty of a school’s EECS de-
partment. The individuals are distinguishable. How many ways are there to select a committee
of six members if at least 1 hacker must be on the committee? You may express this in terms of
binomial coefficients.

Solution. We need to count all possible combinations of people such that there is at least one
hacker in every combination, but we must remember not to count any combinations multiple times.

We can have committees with

1 hacker, 5 theoreticians: ( )(g)
2 hackers, 4 theoreticians: (124) (i)
3 hackers, 3 theoreticians: (134) (§)
4 hackers, 2 theoreticians: (144 ) (g)
5 hackers, 1 theoretician: (1 )(?)
6 hackers, 0 theoreticians: ( )(S)

So there are () (5) + (5) (3) + (5) G) + (3) @) + (5) ) + () (5) different possibilities for com-
mittees.
Another way to solve this problem is to say that there are (262) different committees, and (2)

committees of just theoreticians. So there are (262) — (2) different possibilities for committees.

Problem 6 Consider the Towers of Hanoi game with n disks and 3 distinct poles. An arrangement
of the disks on the poles is said to be legal if no disk rests on a smaller disk. How many different
legal arrangements of the n disks on the 3 poles are there?

Solution. Since each disk is different (and therefore distinguishable), we have at least 3™ different
configurations by the product rule: 3 choices for the largest disk, 3 choices for the second largest
disk, and so on. Furthermore, since the disks on a particular pole must be in order from largest
on the bottom to smallest on the top, there is a unique way to order the disks given a particular
assignment to the poles; hence, there are exactly 3" different configurations.

Problem 7 How many integers in the range from 1 to 1000 are not divisible by any of the numbers
6, 10, and 157

Solution. Here we use inclusion-exclusion to count the number of integers from 1 to 1000 not
divisible by 6, 10, or 15. Make a table, and add the numbers with appropriate signs:

divisible by | least common multiple | number of integers | include/exclude
each of of divisors from 1 to 1000 +/—
1 1000 +
6 6 166 —
10 10 100 —
15 15 66 —
6, 10 30 33 +
6, 15 30 33 +
10, 15 30 33 +
6, 10, 15 30 33 —

These add up to 734.
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Problem 8 A positive integer is called square-free if it is not divisible by the square of any positive
integer greater than 1. For example 35 = 5 - 7 is square-free but 18 = 2 - 32 is not. 1 is square-free.
Use inclusion-exclusion to find the number of square-free positive integers strictly less than 151.
Solution. We use inclusion-exclusion as done in lecture for the case of prime numbers. We first
compute the number of positive integers less than 150 that are not square free.

Let Ay (respectively, A3, As, A7, A11) be the set of multiples of 22 (respectively, 32, 52, 72, 112)
less than 150. The cardinality of the union of these sets is given by

|AgUA3sUAs U A7| = |Ag|+|As| + |As| + |A7| + |A11] — |42 N A3| — |4 N A5
= [150/2%] + [150/32| + [150/5%] + |150/72| + [150/112 ]
—[150/(2%3%)] — | 150/(225?]
= 374+16+6+3+1—-4—1
= 58

Therefore the number of square-free positive integers less than 150 is

150 —58 =92.

Problem 9 Enumeration and permutations

(a) Kiyle is manager of the MIT Chess Club. After a long and grueling match, the players have
gone home, leaving Kyle to put the players’ unlabeled chess sets back in their lockers. If there are
n players/lockers and n chess sets, how many ways could Kyle place chess sets in lockers such that
there is exactly one chess set in each locker, disregarding the correctness of such placement?

Solution. We can formulate this as a function-counting problem. Since there are n chess sets and
n lockers, we can assign each chess set a unique number between 1 and n inclusive, and do the
same for the lockers. Then, we are looking for an injective function from {1,... ,n} — {1,... ,n}.

Note that the first element of the domain has n possible mappings; the second has n — 1 possible
mappings (i.e., all but the first element); the third has n — 2 possible mappings (i.e., all but the first
two); and so on, for all n elements of the domain. This is simply n!, the number of permutations
of {1,...,n}.

(b) Say Kyle recognizes Josh’s chess set, so he can place that one correctly, but recognizes none
of the other chess sets. How many possible ways can Kyle place chess sets in lockers assuming he
at least gets Josh’s right?

Solution. We function count, as before. Without loss of generality, assign Josh’s chess set and
locker the number 1, and set f(1) = 1 in our function. We can now create an injective function on
the remaining elements; by part (a), this is simply (n — 1)!.
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(¢) Say Kyle really resents Josh’s brainpower, and decides to get even by putting Josh’s chess set
in another student’s locker. How many ways can he place chess sets in lockers assuming he does
not place Josh’s chess set into Josh’s locker?

Solution. Again, we function count. (Notice a pattern?) Without loss of generality, assign
Josh’s chess set and locker the number 1, as before. We can first choose an element j # 1 from
the domain to map to 1 ((n — 1) ways). Then, we note that we have n — 1 elements of the
domain and n — 1 elements of the codomain in which we want an injection, which we can choose
in (n — 1)! ways from part (a). This gives us (n — 1)(n — 1)!, which makes sense since, from part
(b), (n—1)(n—1)!+ (n —1)! =nl

(d) Kyle has a sudden change of heart and decides to be nice to Josh. At this time, he also
realizes that Shishir has conscientiously written his name on the outside of his chess set, so now
Kyle knows the correct destinations of two chess sets. How many arrangements are there now?

Solution. As in part (b), we can simply create an injective function on the remaining elements,
which gives us (n — 2)!.

(e) Say Kyle is taking mind-altering drugs and has again changed his mind about Josh. Still
being able to discern Josh’s and Shishir’s chess sets—but wishing to ill-place Josh’s—Kyle can
place chess sets in lockers in how many ways?

Solution. Assign 1 to Josh’s locker and chess set, and 2 to Shishir’s locker and chess set. We know
that |AN B| =|A| — |[AN B, so if we take A to be the set of functions with f(2) =2 and B to be
the set of functions with f(1) # 1, then we know |A| and |AN B|, the latter of which is the solution
to the previous part; so, the answer is (n — 1)! — (n — 2)! = (n — 2)(n — 2)1.

Problem 10 On a set of n elements how many of the following are there

(a) Dbinary relations? Solution. 2"° since there are this many different 0 — 1 matrices of order
n.

(b) symmetric binary relations? Solution. The matrix associated with a symmetric relation

n .
is symmetric. Since there are on+(3) different symmetric matrices there are an equal number of
symmetric relations.

(c¢) reflexive binary relations? Solution. The matrix associated with a reflexive relation has 1’s

along the main diagonal . Hence the number of such matrices, and therefore reflexive relations, is

2”2 -n

(d) symmetric and reflexive binary relations? Solution. The matrix associated with a symmetric
and reflexive relation is symmetric and ha s 1’s along the main diagonal. Hence the number of such
2

relations is 2( )

(e) symmetric or reflexive binary relations? Solution. The number of symmetric or reflexive
relations = the number of reflexive relations + the number of symmetric relations — the number

of reflexive and symmetric relations = gn’-n 4 ont(3) — 2(3).



