
Massachusetts Institute of Technology Handout 23
6.042J/18.062J: Mathematics for Computer Science March 16, 2000
Professors David Karger and Nancy Lynch

Problem Set 5 Solutions

Problems:

Problem 1 Suppose you were about to enter college today and a college loan officer offered you
the following deal: $25,000 at the start of each year for four years to pay for your college tuition
and an option of choosing one of the following repayment plans:

Plan A: Wait four years, then repay $20, 000 at the start of each year for the next ten years.

Plan B: Wait five years, then repay $30, 000 at the start of each year for the next five years.

Suppose the annual interest rate is currently 7% and does not change in the future.

a) Which repayment plan would you choose?

Solution:

The use of the word ‘interest’ above is slightly awkward. It refers to the additional money
you (or the loan officer) would make if your money was just sitting in a bank. However, we
can treat it just as we treat inflation: $1 today will be worth $1.07 next year, and $1.072 the
year after.

Given this, set r = 1
1.07 . Then:

A =
9∑
y=0

20000 · ry+4

= r4 ·
9∑
y=0

20000 · ry

= 20000r4 ·
9∑
y=0

ry

= 20000r4 · 1− r10

1− r
= $114, 666.69

2 Handout 23: Problem Set 5 Solutions

B =
4∑
y=0

30000 · ry+5

= r5 ·
4∑
y=0

30000 · ry

= 30000r5 ·
4∑
y=0

ry

= 30000r5 · 1− r5

1− r
= $93, 840.63

You should clearly take Plan B. You will be paying back much less in today’s dollars.

b) What is the loan officer’s effective profit (in today’s dollars) on the loan?

Solution:

The value of the money you are given is:

Loan =
3∑
y=0

25000 · ry

= 25000 ·
3∑
y=0

ry

= 25000 · 1− r4

1− r
= $90, 607.90

Therefore, the loan officer’s profit is effectively $3, 233. (Or $24, 059 if we are not on the ball).

Problem 2 Consider the following summation:

n∑
k=2

1
k(k − 1)

(a) Find a closed form solution for this summation.

Hint : Try using partial fractions to break 1
k(k−1) into a difference of two terms.

Solution:

It is easy to find that 1
k(k−1) = 1

k−1 −
1
k . So we have:

Handout 23: Problem Set 5 Solutions 3

n∑
k=2

1
k(k − 1)

=
n∑
k=2

(
1

k − 1
− 1
k

)

=
n∑
k=2

1
k − 1

−
n∑
k=2

1
k

=
1
1

+
1
2

+ . . .+
1

n− 2
+

1
n− 1

−[
1
2

+
1
3

+ . . .+
1

n− 1
+

1
n

]

So all that does not cancel out is 1− 1
n .

(b) Use induction to verify your closed form solution (i.e., prove that it is correct).

Solution:

P (n) :=
[∑n

k=2
1

k(k−1) = 1− 1
n

]
Base case: P (2) is true because the only term in the summation is 1

2(2−1) = 1
2 = 1− 1

2 .

Inductive step: Assuming P (n), show P (n+ 1).

n+1∑
k=2

1
k(k − 1)

=
n∑
k=2

1
k(k − 1)

+
1

(n+ 1)(n)

= 1− 1
n

+
1

(n+ 1)(n)
IH

= 1− n+ 1
(n+ 1)n

+
1

(n+ 1)(n)

= 1− n

(n+ 1)n

= 1− 1
n+ 1

Problem 3 Find closed-form expressions for the following sums:

(a)

n∑
k=0

8k − 5k

9k

Solution:

4 Handout 23: Problem Set 5 Solutions

n∑
k=0

8k − 5k

9k
=

n∑
k=0

[
8k

9k
− 5k

9k

]

=
n∑
k=0

[(
8
9

)k
−
(

5
9

)k]

=
n∑
k=0

(
8
9

)k
−

n∑
k=0

(
5
9

)k
=

1−
(

8
9

)n+1

1− 8
9

−
1−

(
5
9

)n+1

1− 5
9

=
1 + 1

3

(
5
9

)n+1 −
(

8
9

)n+1

12

(b)

n∑
i=1

∞∑
j=0

i7/16 ·
(

1− 1
4i9/16

)j

Solution:

This sum is actually just a sum of a geometric series followed by the sum of an arithmetic series.

n∑
i=1

∞∑
j=0

i7/16 ·
(

1− 1
4i9/16

)j
=

n∑
i=1

i7/16 · 1

1−
(

1− 1
4i9/16

)
=

n∑
i=1

4i

= 2n(n+ 1)

Problem 4 Note: This problem is only worth one point. Give it some thought but don’t exhaust
yourself on it.

Consider the sum of the following sequence:

1− 1 +
1
2
− 1

2
+

1
3
− 1

3
+

1
4
− 1

4
+

1
5
− 1

5
+ . . .

To sum it, suppose we rearrange the terms and write it as:

(1 + 1
2 − 1) +

(1
3 + 1

4 −
1
2) +

(1
5 + 1

6 −
1
3) +

(1
7 + 1

8 −
1
4) +

. . .

Handout 23: Problem Set 5 Solutions 5

which we can write as a summation as:

a =
∞∑
n=1

(
1

2n− 1
+

1
2n
− 1
n

)
=
∞∑
n=1

1
2n(2n− 1)

On the other hand, we arrange the original summation as

(1− 1− 1
2) +

(1
2 −

1
3 −

1
4) +

(1
3 −

1
5 −

1
6) +

(1
4 −

1
7 −

1
8) +

. . .

b =
∞∑
n=1

(
1
n
− 1

2n− 1
− 1

2n

)
=
∞∑
n=1

−1
2n(2n− 1)

= −a

How is this possible? Choose the correct response from the options below. Be prepared to back up
your answer.

a) I find the above somewhat disturbing, but I can’t resolve it.

b) Don’t toy with me. Your petty tricks are no match for my superior mathematical skills.

c) It’s 4am Tuesday morning. I’m not even coherent enough to be disturbed.

Solution:

Of course, this is a personal question. However, if you answered c, you really should get started
earlier – for your own good.

Students who answered b may have seen a hint it the two harmonic summations (positive and
negative) hiding within the original series. The original summation is only conditionally convergent.
(This means that if you sum the absolute value of the terms, 2 ·

∑∞
n=1

1
n , the summation is not

finite). With such summations, you cannot freely rearrange the terms. In fact, there is a theorem
that says that any series that converges but does not converge absolutely can be rearranged to form
any real number.

It is not insightful to declare that a = 0 = −0. While this is part of the contradiction above,
it is clearly not the answer. Every term in the first summation is positive. Every term in the
second summation is negative. Neither can be zero, as a result. In fact, they are somewhere around
±log(2). Similarly, it is not adequate to say that the sums diverge or are not well-defined. Both
summations, as well as the original zero-sum, really do converge on finite numbers.

Don’t worry about the details here. However, you should take from this a warning about being too
loose with your math, much as you must avoid making flawed but convincing proofs.

6 Handout 23: Problem Set 5 Solutions

Problem 5 The following labeled state machine DSet models a “dynamic set” of integers. (Re-
member that a set, unlike a multiset, can only contain one element of any particular object). The
set starts out empty.

A client can modify or inspect the set by means of the following operations:

• add(x), which adds an integer x to the set.

• remove(x), which removes integer x from the set.

• isin(x), which tells if the element x is in the set.

Formally, DSet can be defined as a collection of the following components:

• Q: The states consist of the components:

– set , a set of integers

– reqtype ∈ {“add”, “remove”, “isin”} ∪ {null}
– element ∈ Z ∪ {null}
– retval ∈ {“OK”,null} ∪ Boolean

• Q0: Initially, set = ∅, and all the other components are null . (Note that null is a special
symbol, not the empty set ∅).

• L:

Input labels:

request-add(x), x ∈ Z
request-remove(x), x ∈ Z
request-isin(x), x ∈ Z

Internal labels:

compute-add(x), x ∈ Z
compute-remove(x), x ∈ Z
compute-isin(x), x ∈ Z

Output labels:

return(“OK”)
return(b), b ∈ Boolean

• Transitions (δ):

request-add(x)
if reqtype = null then

reqtype := “add”
element := x

request-remove(x)
if reqtype = null then

reqtype := “remove”
element := x

Handout 23: Problem Set 5 Solutions 7

request-isin(x)
if reqtype = null then

reqtype := “isin”
element := x

compute-add(x)
Can occur if reqtype = “add”, element = x, and retval = null

set := set ∪ {x}
retval := “OK”

compute-remove(x)
Can occur if reqtype = “remove”, element = x, and retval = null

set := set − {x}
retval := “OK”

compute-isin(x)
Can occur if reqtype = “isin”, element = x, and retval = null
if x ∈ set then

retval := true
else

retval := false

return(“OK”)
Can occur if retval = “OK”

reqtype, element , retval := null

return(b), b ∈ Boolean
Can occur if retval = b

reqtype, element , retval := null

(a) Which of the following are valid traces of DSet? For any incorrect ones, indicate what is
wrong.

1. Start with the sole element of Q0.

• request-add(7)

• return(“OK”)

• request-isin(7)

• return(true)

• request-remove(7)

• return(“OK”)

• request-remove(7)

• return(“OK”)

2. Start with the sole element of Q0.

• request-add(7)

• return(“OK”)

• request-remove(4)

8 Handout 23: Problem Set 5 Solutions

• return(false)

• request-add(7)

• return(“OK”)

3. Start with the sole element of Q0.

• request-add(4)

• request-add(6)

• return(“OK”)

• request-isin(6)

• request-isin(4)

• return(true)

4. Start with the sole element of Q0.

• request-add(3)

• request-remove(3)

• return(“OK”)

• request-isin(3)

• return(false)

• request-remove(1)

• return(“OK”)

Solution:

1. valid

2. invalid – remove computations always set the return value to “OK”, whether or not the
element was really removed.

3. invalid – the second add request would have been ignored, so the check for 6 should return
false.

4. invalid – similarly, the first remove request would have been ignored, since the add request is
still ‘pending’ (reqtype is not null).

Note that it is not enough to imagine one execution that would not produce such a trace. A trace
is possible if any execution allowed by the rules of the transitions would produce that trace.

Handout 23: Problem Set 5 Solutions 9

(b) High-level implementation:

One way to implement DSet is to represent the set by a finite sequence of integers. The add
operation could append the new element to the end of the sequence whether or not it already
appears in the sequence. The isin operation returns the answer to whether or not any copy of the
element is in the sequence. The remove operation removes the element from the sequence at every
place that it occurs.

Define a state machine Seq corresponding to this implementation. In implementing the operations,
you should not try to represent individual search steps that try to locate an element in the sequence.
Instead, let each operation perform its main computation in one large-granularity step, which
involves the entire sequence. Thus, this description will still be rather abstract.

Solution:

• Q: The states consist of the components:

– seq , a sequence (ordered) of integers

– reqtype ∈ {“add”, “remove”, “isin”} ∪ {null}
– element ∈ Z ∪ {null}
– retval ∈ {“OK”,null} ∪ Boolean

• Q0: Initially, seq has no elements, and all the other components are null .

• L: identical to abstract case.

• δ: Input, output are identical to abstract case.

compute-add(x)
Can occur if reqtype = “add”, element = x, and retval = null

seq := seq with x appended on the end
retval := “OK”

compute-remove(x)
Can occur if reqtype = “remove”, element = x, and retval = null

seq := seq compressed to not include any elements equal to x
retval := “OK”

compute-isin(x)
Can occur if reqtype = “isin”, element = x, and retval = null
if x ∈ seq then

retval := true
else

retval := false

(c) Prove that your Seq state machine implements the DSet labeled state machine; that is, prove
that any trace of Seq is a trace of DSet . Remember that a trace is a listing of only the input and
output labels during an execution – the externally visible behavior. You may use the Abstraction
Theorem.

Solution:

10 Handout 23: Problem Set 5 Solutions

We want to show that any trace of Seq is a trace of DSet. In other words, any execution α of
Seq has a corresponding execution β in DSet that produces the same externally visible (input and
output) labels.

trace(α) = trace(β)

We show this by induction on the length of α (the number of transitions in that execution). We
must first strengthen our hypothesis to include a relation between the states of Seq and DSet –
otherwise, we will not have enough to go on to do the induction. This relation is the abstraction
relation.

Use the relation that reqtype, element, and retval are identical, and seq contains the same elements
as set (although they may be repeated in seq).

So, our proposition would be P (n): For any execution α of Seq of length n, there is an execution
β of DSet that has the same trace and ends with reqtype, element, and retval in DSet identical
to those in Seq and with the elements of seq and set being identical.

Given the Abstraction Theorem, we only have to show that these conditions are preserved for any
transition that Seq can make.

The possible transitions of Seq are:

request-add(x)
Also do a request-add(x). Nothing changes besides the identical alterations, and the labels
generated are the same. (By the abstraction relation, we know that the reqtype in one
execution will be null if and only if it is null in the other).

request-remove(x)
Also do a request-remove(x). Nothing changes besides the identical alterations, and the
labels generated are the same.

request-isin(x)
Also do a request-isin(x). Nothing changes besides the identical alterations, and the labels
generated are the same.

compute-add(x)
Do a compute-add(x). While seq may now have several copies of x, this is allowed by our
abstraction relation. Otherwise, the conditions are maintained.

compute-remove(x)
Do a compute-add(x). While seq may have had several copies of x, all are removed by the
Seq transition.

compute-isin(x)
Do a compute-isin(x). Will find the same result in both seq and set, because the abstraction
relation says that they have the same elements.

return(“OK”)
Also do a return(“OK”). Nothing changes besides the identical alterations, and the labels
generated are the same.

return(b), b ∈ Boolean
Also do a return(b). Nothing changes besides the identical alterations, and the labels gener-
ated are the same.

Handout 23: Problem Set 5 Solutions 11

(d) Low-level implementation:

Give an implementation called SeqLow that relies on lower-level operations for performing the
searches and removals (operate at the element-level).

Solution:

• Q: The states consist of the components:

– seq , a sequence (ordered) of integers seq0 through seqn

– index ∈ N
– offset ∈ N
– maxindex ∈ N
– reqtype ∈ {“add”, “remove”, “isin”} ∪ {null}
– element ∈ Z ∪ {null}
– retval ∈ {“OK”,null} ∪ Boolean

• Q0: Initially, seq has no elements, index = 0, maxindex = 0, offset = 0, and all the other
components are null .

• L: Input, output identical to abstract case.

Internal labels:

compute-add(x), x ∈ Z
compute-remove(x), x ∈ Z
compute-isin(x), x ∈ Z

• δ: Input, output are identical to abstract case.

compute-add(x)
Can occur if reqtype = “add”, element = x, and retval = null

seqindex := x
maxindex := maxindex+ 1
retval := “OK”

compute-remove(x)
Can occur if reqtype = “remove”, element = x, and retval = null
if index = maxindex then

index := 0
maxindex := maxindex− offset
retval := “OK”

else if seqindex = x then
index := index+ 1
offset := offset+ 1

else
seqindex-offset := seqindex
index := index+ 1

12 Handout 23: Problem Set 5 Solutions

compute-isin(x)
Can occur if reqtype = “isin”, element = x, and retval = null
if index = maxindex then

index := 0
retval := false

else if seqindex = x then
index := 0
retval := true

else
index := index+ 1

(e) Give an informal argument that SeqLow implements Seq .

Solution:

We must show that every sequence of SeqLow is a sequence of Seq. Informally, we can argue that
for any execution A of SeqLow that has the same trace as an execution B of Seq, every transition
from A can be matched by some sequence of transitions from B. We can match up the components
of the two systems very closely.

We take as an invariant that all like-named components in the two systems have the same values.
maxindex is one more than the largest index in the sequence. index holds the current place in the
sequence that we are examining. If reqtype = “isin”, then we know that there are no elements
equal to element from seq0 to seqindex−1. If reqtype = “remove”, then we know that offset is
equal to the number of elements that were equal to element from seq0 to seqindex−1, and also that
all of those elements have been shifted down to fill in. (It is actually rather difficult to express
these constraints more formally).

Input and output transitions are exactly matched.

compute-add(x)
Also do a compute-add(x). Will add the element to the end in both cases.

compute-remove(x)
if index = maxindex then
Also do a compute-remove(x). In both cases, all elements that match x are gone from the
sequence, and the sequence is that much shorter, else if seqindex = x then
Do nothing. No observable changes; just stepping through details. else
Do nothing. No observable changes; just stepping through details.

compute-isin(x)
if index = maxindex then
Also do a compute-isin(x). Will return the same value, since we now know that x is not
equal to any seqi where i < maxindex. else if seqindex = x then
Also do a compute-isin(x). Will return the same value, since we know that x is equal to some
seqi (namely, i = index). else
Do nothing. No observable changes; just stepping through details.

Problem 6 Consider an “abstract object” that maintains a dynamic polynomial poly . This
polynomial has variable x, and integer coefficients. Initially, the polynomial is just the 0 polynomial

Handout 23: Problem Set 5 Solutions 13

(no terms). The polynomial supports operations:

• add-term(c, e), which adds the term cxe to the maintained polynomial.

• coeff(e), which asks for the coefficient of the xe term.

(a) Model this object by a labeled state machine ADP . The state should keep track of the
polynomial (a value that is simply a mathematical polynomial – you don’t have to think about
how to represent it using lower-level mathematical objects like numbers, matrices, sequences, etc.)
The state will also need some bookkeeping information to keep track of operations in progress.
The labels should include inputs reflecting the requests and outputs reflecting the responses. Your
machine should ignore requests that arrive while an operation is active.

Solution:

• Q:
p ∈ {polynomials}
req ∈ {“add-term”, “find-coeff”, null} ∪ {“OK”} ∪ Z
power ∈ N ∪ {null}
mult ∈ Z ∪ {null}

• Q0:
A set with only one element:

{(0, null, null, null)}
or, equivalently,

p = 0, req = null, power = null, mult = null

• L:

Input labels:

req-add-term(c, e), c ∈ Z, e ∈ N
req-coeff(e), e ∈ N

Internal labels:

comp-sum(c, e), c ∈ Z, e ∈ N
comp-coeff(e), e ∈ N

Output labels:

return(“OK”)
return(c), c ∈ Z

• δ:
Each is associated with (generates) the label of its namesake.

1. req-add-term(c, e):
Can occur anytime.
if req = null then

14 Handout 23: Problem Set 5 Solutions

req := “add”
power := e
mult := c

2. req-coeff(e):
Can occur anytime.
if req = null then
req := “find-coeff”
power := e
mult := null

3. comp-sum(c, e):
Can occur if req = “add-term”, mult = c, and power = e.
p := p+ c · xe
req := “OK”

4. comp-coeff(e):
Can occur if req = “find-coeff” and power = e.
req := coefficient of xe in p

5. return(“OK”):
Can occur if req = “OK”.
req, power,mult := null

6. return(c):
Can occur if req = c.
req, power,mult := null

(b) List some (4–5) traces that are exhibited by your state machine ADP . Include at least one
that involves a request arriving when it is not supposed to.

Solution:

Start with (0, null, null, null):

req-add-term(1, 1)
return(“OK”)
req-add-term(2, 2)
return(“OK”)
req-coeff(2)
return(2)
req-add-term(2, 1)
return(“OK”)
req-coeff(1)
return(3)

Start with (0, null, null, null):

Handout 23: Problem Set 5 Solutions 15

req-add-term(1, 1)
return(“OK”)
req-add-term(2, 2)
req-coeff(2)
return(“OK”)
req-coeff(2)
req-add-term(3, 2)
return(2)
req-coeff(2)
return(2)

Start with (0, null, null, null):

req-add-term(4, 2)
req-add-term(7, 1)
return(“OK”)
req-coeff(3)
req-coeff(2)
return(0)
req-coeff(1)
return(0)
req-coeff(2)
return(4)

Of course, there are many more traces. The important thing about this system is that requests
will be dropped if there is still a pending request that has not generated a return – the value of
req will not be null when they come in.

(c) Describe in words an implementation of your state machine ADP . The state of this im-
plementation should involve lower-level mathematical objects like numbers, matrices, sequences,
etc.

Solution:

Using Arrays: Keep an array poly such that the ith entry holds the coefficient of xi in p.
The array size will have to grow as necessary, or there will be a limit on the terms of the
polynomial. comp-add-term(c, e) will simply be poly[e] := poly[e] + c. comp-coeff(e) will be
req := poly[e].

Using Ordered Pairs: Keep a set terms of ordered pairs (i, c) mapping the ith entry to the
coefficient of xi in p. comp-add-term(c, e) will be more complex, unless we just add the pair
and sum all pairs with like first components on lookup. We will have to search through
for an existing pair with a matching first component. This will require more internal state.
comp-coeff(e) will be a similar search for the right pair, returning 0 if none is found.

16 Handout 23: Problem Set 5 Solutions

(d) Formalize your implementation as a labeled state machine Imp. It should have the same
external labels as your labeled state machine ADP .

Solution:

Using Arrays: Assume that we ignore the bounds of the array.

We need the following modifications to the abstract machine:

• Q:
For all (many) i ∈ N,
poly[i] ∈ Z

req ∈ {“add-term”, “find-coeff”, null} ∪ {“OK”} ∪ Z
power ∈ N ∪ {null}
mult ∈ Z ∪ {null}
• Q0:

A set with only one element:
poly[i] = 0for all i, req = null, power = null, mult = null

• L: Same as before.

• δ: Same as before for input and output.

– comp-sum(c, e):
Can occur if req = “add-term”, mult = c, and power = e.
poly[e] := poly[e] + c
req := “OK”

– comp-coeff(e):
Can occur if req = “find-coeff” and power = e.
req := poly[e]

Using Unique Ordered Pairs: We need the following modifications to the abstract machine:

• Q:
A linked list terms of the form (i,m, next) with i ∈ N, m ∈ Z, next ∈ terms ∪ {null}.
firstterm ∈ terms
curterm ∈ terms ∪ {null}
req ∈ {“add-term”, “find-coeff”, null} ∪ {“OK”} ∪ Z
power ∈ N ∪ {null}
mult ∈ Z ∪ {null}
• Q0:

A set with only one element:
firstterm = (0, 0, null), curterm = firstterm, terms = {firstterm}, req = null,
power = null, mult = null

• L: Same as before for input and output labels.

Internal labels:
comp-sum(c, e), c ∈ Z, e ∈ N
comp-sum-next(c, e), c ∈ Z, e ∈ N

Handout 23: Problem Set 5 Solutions 17

comp-sum-default(c, e), c ∈ Z, e ∈ N
comp-coeff(e), e ∈ N
comp-coeff -next(e), e ∈ N
comp-coeff -default(e), e ∈ N

• δ: Input, output transitions same as before.

– comp-sum(c, e):
Can occur if req = “add-term”, mult = c, power = e, curterm 6= null, curterm.i =
e
curterm.m := curterm.m+ c
req := “OK”
curterm := firstterm

– comp-sum-next(c, e):
Can occur if req = “add-term”, mult = c, power = e, curterm 6= null, curterm.i 6=
e
curterm := curterm.next

– comp-sum-default(c, e):
Can occur if req = “add-term”, mult = c, power = e, curterm = null
firstterm := (e, c, firstterm)
req := “OK”
curterm := firstterm

– comp-coeff(e):
Can occur if req = “find-coeff”, power = e, curterm 6= null, curterm.i = e
req := curterm.m
curterm := firstterm

– comp-coeff -next(e):
Can occur if req = “find-coeff”, power = e, curterm 6= null, curterm.i 6= e
curterm := curterm.next

– comp-coeff -default(e):
Can occur if req = “find-coeff”, power = e, curterm = null
req := 0
curterm := firstterm

Note that we implicitly added a new term to terms every time we expanded the linked list.

Using Multiple Ordered Pairs: We need the following modifications to the abstract machine:

• Q:
A linked list terms of the form (i,m, next) with i ∈ N, m ∈ Z, next ∈ terms ∪ {null}.
firstterm ∈ terms
curterm ∈ terms ∪ {null}
total ∈ Z
req ∈ {“add-term”, “find-coeff”, null} ∪ {“OK”} ∪ Z
power ∈ N ∪ {null}
mult ∈ Z ∪ {null}

18 Handout 23: Problem Set 5 Solutions

• Q0:
A set with only one element:
firstterm = (0, 0, null), curterm = firstterm, terms = {firstterm}, total = 0, req =
null, power = null, mult = null

• L: Same as before for input and output labels.

Internal labels:
comp-sum(c, e), c ∈ Z, e ∈ N
comp-coeff(e), e ∈ N
comp-coeff -next(e), e ∈ N
comp-coeff -end(e), e ∈ N

• δ: Input, output transitions same as before.

– comp-sum(c, e):
Can occur if req = “add-term”, mult = c, and power = e
firstterm := (e, c, curterm)
req := “OK”

– comp-coeff(e):
Can occur if req = “find-coeff”, power = e, curterm 6= null, and curterm.i = e
total := total + curterm.m
curterm := curterm.next

– comp-coeff -next(e):
Can occur if req = “find-coeff”, power = e, curterm 6= null, and curterm.i 6= e
curterm := curterm.next

– comp-coeff -end(e):
Can occur if req = “find-coeff”, power = e, and curterm = null
req := total
curterm := firstterm
total := 0

(e) Argue that your implementation Imp is correct, in the sense that every trace of Imp is also a
trace of ADP .

Solution:

Using Arrays: This is the easiest.

The abstraction function is obvious: All corresponding elements have the same values and for
every term cxi in p, poly[i] = c. Only the to differing transitions are nontrivial to examine.
(Otherwise, the executions are identical and the abstraction function is clearly preserved).
However, even comp-sum and comp-coeff are easily accounted for: if an execution of Imp
is extended by either, extend an execution of ADP with the same trace using the same
transition. comp-sum preserves the abstraction function by performing matching arithmetic.
comp-coeff preserves the abstraction function because p and poly are in correspondence and
will set req to the same value.

Using Unique Pairs: Somewhat tricky to do formally.

Handout 23: Problem Set 5 Solutions 19

The abstraction function is: elements of the same name have the same values; every non-zero
term in p has exactly one corresponding triplet in terms, and every zero-coefficient term in p
either has no corresponding triplet or has a triplet with a second component of 0.

We need other elements of an invariant: In Imp, firstterm begins a linked list that reaches
all terms in terms; there are no terms with i = mult ‘between’ firstterm and curterm;
no two terms have the same i component; if req is not “find-coeff” or “add-term” then
curterm = firstterm.

Input and output transitions have a simple identity correspondence. Roughly, if the last
transition of the partial execution of Imp is:

comp-sum(c, e)
perform a comp-sum(c, e) transition. Both set req to “OK”; the assignments keep the
polynomial structures aligned. (We use the fact that the IH tells us that no other element
of terms represents the same exponent here). Although req is changed, curterm is set
to firstterm. Nothing else is changed.

comp-sum-next(c, e)
do nothing. No data is changed, and the invariant holds over the change in curterm
because i 6= mult for the old curterm.

comp-sum-default(c, e)
perform a comp-sum(c, e) transition. If there are no terms after curterm, and no terms
with i = mult between firstterm and curterm, then there must be no terms at all with
i = mult. So adding in the new term did not violate uniqueness. The new firstterm is
connected to all of the elements of terms because the old firstterm was.

comp-coeff(e)
perform a comp-coeff(e) transition. Must be the correct coefficient because p and terms
are in correspondence and no two terms have the same i component.

comp-coeff -next(e)
do nothing. No data is changed, and the invariant holds over the change in curterm
because i 6= mult for the old curterm.

comp-coeff -default(e)
perform a comp-coeff(e) transition. If there are no terms after curterm, and no terms
with i = mult between firstterm and curterm, then there must be no terms at all with
i = mult. By the correspondence between p and terms, the coefficient must be 0 in
both ADP and Imp.

Although the steps are not filled in, the above is a basic reasoning that traces of Imp can be
matched by traces of ADP .

Using Multiple Pairs: Slightly trickier to do formally.

The abstraction function is: elements of the same name have the same values; every term in
p has a coefficient equal to the sum of m in all triplets (i,m, next) in terms with i equal to
that coefficient.

We need other elements of an invariant: In Imp, firstterm begins a linked list that reaches
all terms in terms; total is the sum of m in all triplets (i,m, next) between firstterm and
curterm; if req is not “find-coeff” then curterm = firstterm.

20 Handout 23: Problem Set 5 Solutions

Input and output transitions have a simple identity correspondence. Roughly, if the last
transition of the partial execution of Imp is:

comp-sum(c, e)
perform a comp-sum(c, e) transition. Both set req to “OK”. The assignments keep the
polynomial structures aligned by adding in the new coefficient. The new firstterm is
connected to all of the elements of terms because the old firstterm was. Nothing else
is changed.

comp-coeff(e)
do nothing. total is appropriately increased, since curterm is advanced beyond the term
that is contributing.

comp-coeff -next(e)
do nothing. No data is changed, and the invariant holds over the change in curterm
because i 6= mult for the old curterm.

comp-coeff -end(e)
perform a comp-coeff(e) transition. If there are no terms after curterm, then all terms
with i = mult are between firstterm and curterm. Thus, total must be the proper
coefficient of term e. Since p and terms are in correspondence, Imp and ADP will
update req to the same value.

Problem 7 Attached to this problem set are some students’ solutions from a previous problem
set. Mark up these solutions, indicating things that are incorrect or unclear, and if possible show
how the solution can be made completely correct and clear. Please refer to the 6.042 course webpage
for more readable versions of the students’ solutions.

