Prove: $\forall n \ge 0(P(n))$ 1. (Base) P(0)2. (Inductive step) $\forall n \ge 0(P(n) \Rightarrow P(n+1))$ Start state is 0 is a multiplication of the state of the state is 1. (Base) P(0)2. (Inductive step) $\forall n \ge 0(P(n) \Rightarrow P(n+1))$

- 1. Fix $n \ge 0$.
- 2. Assume P(n): after n steps, both jars have mult
- 3. P(n+1): after n+1 steps, both jars have multi

4. QED Implication,3. QED Induction

- P(n+1), that is, after n+1 steps, both jars have n
 Fix q₀, q₁,..., q_{n+1}, an execution with n+1 steps
 In q_n, both jars have multiples of 3. Inductive hyp
 In q_{n+1}, both jars have multiples of 3.
 If the last move is to fill the little jar, then ...
 If the last move is to fill the big jar, then...
 If the last move is to empty the little jar...
 If the last move is to empty the big jar...
 Pour from little to big...
 Pour from big to little...
 - 7. QED
 - 4. QED

Cases UG Prove: $\forall n \ge 0(P(n))$ 1. (Base) P(0)

Start state is (0,0), $0+2 \times 0$ is a multiple

- 2. (Inductive step) $\forall n \ge 0(P(n) \Rightarrow P(n+1))$
 - 1. Fix $n \ge 0$.
 - 2. Assume P(n), that is, after n steps, x + 2y is a multiple of
 - 3. P(n+1), that is, after n+1 steps, x+2y is a multiple of 7 1. Fix $q_0, q_1, \ldots, q_{n+1}$, an execution with n+1 steps.
 - 2. In q_n , x + 2y is a multiple of 7. Inductive hypothesis
 - 3. In q_{n+1} , x + 2y is a multiple of 7.
 - 1. If the last move is (+2, -1) then in q_{n+1} , x + 2y is a
 - 2. If the last move is (-2, +1) then in q_{n+1} , x + 2y is a i
 - 3. If the last move is (+1, +3) then in q_{n+1} , x + 2y is a
 - 4. If the last move is (-1, -3) then in q_{n+1} , x + 2y is a r
 - 5. QED Cases 4. QED Implication, UG

Implication, UG Induction

3. QED

1. If last move is (+2, -1) then in q_{n+1} , x + 2y is a multiple of 7. 1. Assume the last move is (+2, -1). 2. Let x and y denote the values in state q_n , x' and y' the values in state q_{n+1} . 3. x' = x + 2, y' = y - 1. Definition of the multiple of 7 the multiple of 7. 5. $x' + 2y' = (x + 2) + 2(y - 1) = x + 2y \cong 0 \mod 7$ 6. In q_{n+1} , x + 2y is a multiple of 7. 7. QED Implication 3. If last move is (+1, +3) then in q_{n+1} , x + 2y is a m 1. Assume the last move is (+1, +3). 2. Let x and y denote the values in state q_n , x' and y' the values in state q_{n+1} . 3. x' = x + 1, y' = y + 3. Definition of the m 4. $x + 2y \cong 0 \mod 7$ Inductive hypothes 5. $x' + 2y' = (x + 1) + 2(y + 3) = x + 2y + 7 \cong 0 \mod 2$ Algebra 6. In q_{n+1} , x + 2y is a multiple of 7. 7. QED Implication 3. P(n+1), that is, after n+1 steps, GCD(x,y) = GC1. Fix $q_0, q_1, \ldots, q_{n+1}$, an execution with n+1 steps 2. In q_n , GCD(x, y) = GCD(a, b). Inductive hyp 3. In q_{n+1} , GCD(x, y) = GCD(a, b). 1. If x > y in q_n then in q_{n+1} , GCD(x, y) = GCD(x, y)1. Assume x > y in q_n . 2. Let x and y denote the values in state q_n , x' and y' the values in state q_{n+1} . 3. x' = x - y, y' = yDefinition of 4. GCD(x, y) = GCD(a, b). Inductive hyp 5. GCD(x', y') = GCD(x - y, y) Plug in 6. GCD(x - y, y) = GCD(x, y) Number theorem 7. GCD(x', y') = GCD(a, b)Algebra 8. In q_{n+1} , GCD(x, y) = GCD(a, b)Implication 9. QED 2. If x < y in q_n then in q_{n+1} , GCD(x, y) = GCD(x, y)Analogous to 3. QED Cases

Pr	ove: Any live execution of (GCD contains some state
1.	Assume not, that is, \exists a live	e execution in which we
2.	Fix q_0, q_1, q_2, \ldots , a live execution in which we never	
		EI
3.	q_0, q_1, q_2, \ldots is either finite v	with $x = y$ in the final sta
		Definition of "live execu
4.	q_0, q_1, q_2, \ldots is infinite	By 3 and the fact
		that we don't have x
5.	\exists a smallest value of $x + y$	that occurs in the states
		Well-ordering
6.	ix q_k to be a state in which this smallest value is (
		EI
7.	The value of $x + y$ in q_{k+1}	is smaller than the value
		By the way the steps ar
8.	does not have the smallest value of $x + y$ in the	
		By 7
9.	QED	Contradiction, 6 and 8.

Prove: In any live execution, there exists some state in which all the nodes are colored.

- 1. Fix q_0, q_1, q_2, \ldots , a live execution.
- 2. q_0, q_1, q_2, \ldots is either finite with no step enabled in the final stat Definition of "live execution".
- 3. q_0, q_1, q_2, \ldots isn't infinite Number of uncolored nodes decreated every step, can't go below 0.
- 4. q_0, q_1, q_2, \ldots is finite with no step enabled in the final state.
 - By 2. and 3.
- 5. All nodes are colored in the final state.
- If not all nodes are colored in the final state, then some ste Any uncolored node can be colored there are enough colors.
 QED Contradiction (5.1. and 4.)
 QED EG, UG