Prove: $\forall n \ge 0(P(n))$ 1. (Base) P(0)There's exactly string of 0s a 2. (Inductive step) $\forall n \ge 0(P(n) \Rightarrow P(n+1))$ 1. Fix $n \ge 0$. 2. Assume P(n), that is, there are 2^n length n str 3. P(n+1), that is, there are 2^{n+1} length n+1 s Every string of have either a attached at t 4. QED 3. QED Induction Prove: $\forall n \ge 0(P(n))$

- 1. (Base) P(0)
- 2. (Inductive step) $\forall n \ge 0[(\forall i, 0 \le i \le n(P(n))) \Rightarrow P(n i \le n(P(n))$

Str

Prove: $\forall n \geq k(P(n))$

- 1. (Base) P(k)
- 2. (Inductive step) $\forall n \ge k[(\forall i, k \le i \le n(P(n))) \Rightarrow P(n i)]$

Str

Prove: $\forall n \geq 12(P(n))$

- 1. (Base) *P*(12) Use
- 2. (Inductive step) $\forall n \ge 12[(\forall i, 12 \le i \le n(P(n))) \Rightarrow P(n)$

Str

2. (Inductive step) $\forall n \ge 12[(\forall i, 12 \le i \le n(P(n))) \Rightarrow P(a)$

1. Fix
$$n \ge 12$$
.

2.
$$(\forall i, 12 \leq i \leq n(P(n))) \Rightarrow P(n+1)$$

- 1. Assume $\forall i, 12 \leq i \leq n(P(n))$
 - 2. P(n+1)) 1. $n = 12 \Rightarrow P(n+1)$ Use
 - 2. $n = 13 \Rightarrow P(n+1)$ Use
 - 3. $n \ge 14 \Rightarrow P(n+1)$???
 - 4. QED Cas

Imp

UG

- 3. QED
- 3. QED

3.
$$n \ge 14 \Rightarrow P(n+1)$$

1. Assume $n \ge 14$.
2. $P(n-2)$
3. $P(n+1)$

4. QED

Ind. hyp. 2.2.1 with $n-2 \ge 12$ Add one block to the the previous step. Implication Prove: $\forall n \geq 12(P(n))$

- 1. (Base) P(12)
- 2. (Base) P(13)
- 3. (Base) P(14)
- 4. (Inductive step) $\forall n \ge 14[(\forall i, 12 \le i \le n(P(n))) \Rightarrow P(n)$

3. QED

Very specialized stro

Prove: $\forall n \ge 0(P(n))$ 1. (Base) P(0)2. (Inductive step) $\forall n \ge 0[(\forall i, 0 \le i \le n(P(n))) \Rightarrow P(n - ??)]$ 3. QED Strong in

Prove: $\forall n \geq 2(P(n))$	
1. (Base) P(2)	F_2 :
2. (Base) P(3)	F_3 :
3. (Inductive step) $\forall n \geq 3[(\forall i, 2 \leq i \leq n(P(i))) \Rightarrow P(i)$	'(n +
1. Fix $n \geq 3$	
2. Assume $\forall i, 2 \leq i \leq n(P(i))$	
3. $P(n+1)$???
4. QED	Imp
4. QED	Str

3. P(n+1)1. $F_n \ge (\frac{3}{2})^{n-2}$ Ind 2. $F_{n-1} \ge (\frac{3}{2})^{n-3}$ Ind 3. $F_{n+1} = F_n + F_{n-1}$ Def 4. $F_{n+1} \ge (\frac{3}{2})^{n-2} + (\frac{3}{2})^{n-3}$ Plu

5. QED Alg
1.
$$\frac{3}{2} + 1 \ge (\frac{3}{2})^2$$
 Ari
2. $(\frac{3}{2})^{n-2} + (\frac{3}{2})^{n-3} \ge (\frac{3}{2})^{n-1}$ Alg
3. $F_{n+1} \ge (\frac{3}{2})^{n-1}$ 3.3
4. QED Def

Prove: $\forall n \geq 2(P(n))$	
1. P(2)	Jse
2. $\forall n \geq 2[(\forall i, 2 \leq i \leq n)(P(i)) \Rightarrow P(n)]$	
1. Fix $n \ge 2$	
2. Assume $orall i, 2 \leq i \leq n(P(i))$, that is, all numbe	ers
and including n can be factored into primes	5
3. $P(n+1)$, that is, $n+1$ can be factored into	pr
?	??
4. QED	mp

3. QED Strong induction

3. P(n+1), that is, n+1 can be factored into pr 1. If n+1 is prime, then n+1 can be factored Use n+1

- 2. If n + 1 is not prime, then n + 1 can be factorial.
 - 1. Assume n + 1 is not prime.
 - 2. n + 1 can be written as $a \times b$, where 1 Def. o
 - 3. a can be factored into primes. Strong
 - 4. b can be factored into primes. Strong
 - 5. n + 1 can be factored into primes.
 - Use fa
 - Implica
 - Cases

3. QED

Prove: $\forall n \geq \Im(P(n))$	
1. (Base) P(3)	Trivial b
2. (Inductive step) $\forall n \geq \Im(P(n) \Rightarrow P(n+1))$	
1. Fix $n \geq 3$	
2. Assume $P(n)$	
3. $P(n+1)$	
1. Fix T , a tournament, and $p_1 \rightarrow p_2$	$\rightarrow \ldots \rightarrow$
an $n + 1$ -cycle in T .	
2. T contains a 3-cycle.	???
3. QED	Implicat
4. QED	Implicat
3. QED	

2. *T* contains a 3-cycle. 1. If $p_3 \rightarrow p_1$ then *T* contains a 3-cycle. Use $p_1 \rightarrow p_2 \rightarrow p_2$ 2. If $p_1 \rightarrow p_3$ then *T* contains a 3-cycle. 1. Assume $p_1 \rightarrow p_3$. 2. *T* contains an *n*-cycle. Use $p_1 \rightarrow p_3 \rightarrow p_3$ 3. *T* contains a 3 cycle. Inductive hyperatory of the set Prove: $\forall n \geq 1(P(n))$ 1. (Base) *P*(1) С 2. (Inductive step) $\forall n \ge 1[(\forall i, 1 \le i \le n(P(n))) \Rightarrow P(n - i \le n(P(n))$ 1. Fix n > 12. Assume $\forall i, 1 \leq i \leq n(P(i))$. 3. P(n+1)1. Fix any n + 1-player tournament T. 2. T has a locally fair ranking. 1. Choose x to be any player, B the set of players that beat x, and L the set of players that lose to x. 2. *B* has a locally fair ranking. In 3. *L* has a locally fair ranking. In 4. Define a ranking R of all the players b

> B ranking, then x, then L ranking. 5. R is a locally fair ranking for T.

6. QED	E
3. QED	U
4. QED	In
3. QED	S

- 2. \exists a locally fair ranking of T with z first.
 - 1. If z is undefeated in T then \exists a locally fair ranking of T with z first.
 - 1. Assume z is undefeated in T.
 - 2. Choose R to be a locally fair ranking

Prev

- 3. z then R is a locally fair ranking of T.
- 4. \exists a locally fair ranking of T with z first

EG

- 5. QED Impli
- 2. If z is defeated by someone then \exists a locally ranking of T with z first. ???
- 3. QED

Case

2. If z is defeated by someone then \exists a locally fair ranking of T with z first. 1. Assume z is defeated by someone. 2. Choose x to be someone who defeated z. 3. z has the best record in the subtournament involving all-b z has best record in T, no wins are removed 4. \exists ranking of subtournament having z first. Inductive hypothesis, z has best record. 5. Choose R to be a ranking of all-but-x having z first. ΕI 6. In T, x is defeated by someone. z was defeated, and x's record in T is no better than z's. 7. Define ranking S to be R, with x inserted right after the lowest-ranked player that beats x. 8. S is a locally fair ranking of T. R is locally fair, x is beaten by the player ranked just above it and beats all players ranked below it. 9. z is first in S. z is first in R; x is not inserted at the top 10. \exists a locally fair ranking of T with z first. ${\cal S}$ works, EG QED Implication