
Prove:
√

2 is irrational.

1.
√

2 rational ⇒ false

1. Assume
√

2 rational.

2. false

1. Choose a, b ∈ N+,
√

2 = a
b , lowest terms.

Basic properties of Q, EI

2. 2b2 = a2 Algebra

3. a2 is even. EG, def. of “even”

4. a is even. ???

5. Choose c ∈ N , a = 2c. Def. of “even”, EI

6. 4c2 = a2 = 2b2 Algebra

7. 2c2 = b2 Algebra

8. b2 is even. EG, def. of “even”

9. b is even. ???

10. a and b not in lowest terms. 1.2.4, 1.2.9

11. QED 1.2.1, 1.2.10, logic

3. QED Implication.

2. QED Contradiction.
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The proof is by contradiction. Assume for purpose of contra-

diction that
√

2 is rational. Then we can write
√

2 = a/b where

a and b are integers and the fraction is in lowest terms. Squar-

ing both sides gives 2 = a2/b2 and so 2b2 = a2. This implies

that a is even; that is, a is a multiple of 2. As a result, a2 is a

multiple of 4. Because of the equality 2b2 = a2, 2b2 must also

be a multiple of 4. This implies that b2 is even and so b must

be even. But since a and b are both even, the fraction a/b is not

in lowest terms. This is a contradiction, and so the assumption

that
√

2 is rational must be false.
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To prove: ∀n ≥ 0(P (n))

It’s enough to show:

1. (Base) P (0)

2. (Inductive step) ∀n ≥ 0(P (n)⇒ P (n+ 1))
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To prove: ∀n ≥ k(P (n))

It’s enough to show:

1. (Base) P (k)

2. (Inductive step) ∀n ≥ k(P (n)⇒ P (n+ 1))
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Prove: ∀n ≥ 0(1 + 2 + 3 + . . .+ n = n(n+1)
2 )

Prove: ∀n ≥ 0(P (n))

1. (Base) P (0)

2. (Inductive step) ∀n ≥ 0(P (n)⇒ P (n+ 1))

3. QED Induction

Prove: ∀n ≥ 0(
∑n
i=1 i = n(n+1)

2 ).

1. (Base)
∑0
i=1 i = 0(0+1)

2 .

2. (Inductive step) ∀n ≥ 0(
∑n
i=1 i = n(n+1)

2 ⇒
∑n+1
i=1 i = (n+1)(n+2)

2 )

3. QED Induction
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1. (Base)
∑0
i=1 i = 0(0+1)

2 (P (0))

1.
∑0
i=1 i = 0 Def. of sum with no terms

2. 0(0+1)
2 = 0 Arithmetic

3. QED By 1.1 and 1.2.
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2. (Inductive step) ∀n ≥ 0(
∑n
i=1 i = n(n+1)

2 ⇒
∑n+1
i=1 i = (n+1)(n+2)

2 )

1. Fix n ≥ 0.

2.
∑n
i=1 i = n(n+1)

2 ⇒
∑n+1
i=1 i = (n+1)(n+2)

2

1. Assume
∑n
i=1 i = n(n+1)

2

2.
∑n+1
i=1 i = (n+1)(n+2)

2 ???

3. QED Implication

3. QED UG
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2.
∑n+1
i=1 i = (n+1)(n+2)

2
1.

∑n+1
i=1 i = (

∑n
i=1 i) + (n+ 1) Sum has one extra term.

2. (
∑n
i=1 i) + (n+ 1) = n(n+1)

2 + n+ 1

Inductive hypothesis P (n) (2.2.1)

3. n(n+1)
2 + n+ 1 = (n+1)(n+2)

2 Algebra

4. QED Combine previous 3 equations.
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Prove: ∀n ≥ 0 (P (n))

1. (Base) P (0)

2. (Inductive step) ∀n ≥ 0 (P (n)⇒ P (n+ 1))

1. Fix n ≥ 0

2. P (n)⇒ P (n+ 1)

1. Assume P (n)

2. P (n+ 1) ???

3. QED Implication

3. QED Universal generalization

3. QED Induction
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Prove: ∀n ∈ N,n ≥ 0 (6|n3 − n)

1. (Base) 6|03 − 0

2. (Inductive step) ∀n ≥ 0(6|n3 − n⇒ 6|(n+ 1)3 − (n+ 1))

1. Fix n ≥ 0.

2. Assume 6|n3 − n
3. 6|(n+ 1)3 − (n+ 1) ???

4. QED Implication,

UG (condensing two steps here)

3. QED Induction
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Prove: ∀n ∈ N,n ≥ 0(6|n3 − n)

1. (Base) 6|03 − 0

2. (Inductive step) ∀n ≥ 0(6|n3 − n⇒ 6|(n+ 1)3 − (n+ 1))

1. Fix n ≥ 0.

2. Assume 6|n3 − n
3. 6|(n+ 1)3 − (n+ 1)

1. (n+ 1)3 − (n+ 1) = n3 − n+ 3(n2 + n)

Algebra

2. n2 + n is even Last lecture

3. 2|n2 + n Definition of |
4. 6|3(n2 + n) Multiplying both sides by 3

5. 6|(n3 − n) + 3(n2 + n) Divides both terms (2.2, 2.3.4),

so divides sum.

6. QED 2.3.1, 2.3.5

4. QED

3. QED
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Prove: ∀n ≥ 0(Σn
i=0F

2
i = FnFn+1)

1. (Base) Σ0
i=0F

2
i = F0F1

2. (Inductive step) ∀n ≥ 0(Σn
i=0F

2
i = FnFn+1

⇒ Σn+1
i=0 F

2
i = Fn+1Fn+2) ???

3. QED Induction
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Prove: ∀n ≥ 0(Σn
i=0F

2
i = FnFn+1)

1. (Base) Σ0
i=0F

2
i = F0F1 Both sides are 0.

2. (Inductive step) ∀n ≥ 0(Σn
i=0F

2
i = FnFn+1 ⇒ Σn+1

i=0 F
2
i = Fn+1Fn+2)

1. Fix n ≥ 0.

2. Assume Σn
i=0F

2
i = FnFn+1

3. Σn+1
i=0 F

2
i = Fn+1Fn+2

1. Σn+1
i=0 F

2
i = Σn

i=0F
2
i + F2

n+1 Sum has one extra term

2. Σn
i=0F

2
i + F2

n+1 = FnFn+1 + F2
n+1 Inductive hyp.

3. FnFn+1 + F2
n+1 = Fn+1(Fn + Fn+1) Algebra

4. Fn+1(Fn + Fn+1) = Fn+1Fn+2 Fibonacci definition

5. QED Combining equations

4. QED Implication, UG

3. QED Induction
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Prove: ∀n ≥ 3 (Sum of interior angles of any n-sided

convex polygon is (n− 2)180 degrees)

1. (Base) Sum of angles in any triangle is 180. Basic geometry

2. (Inductive step) ∀n ≥ 3 (P (n)⇒ P (n+ 1))

1. Fix n ≥ 3.

2. Assume sum of angles of any n-sided convex poly is (n− 2)180.

3. Sum of angles of any n+ 1-sided convex poly is (n− 1)180.

1. Fix any n+ 1-vertex convex poly X,

say with vertices x1, x2, . . . , xn+1

2. Let Y be poly with vertices x1, x2, . . . , xn (cut out a vertex).

3. Y is a convex poly with at least 3 vertices.

4. Sum of angles of Y is (n− 2)180. Inductive hyp.

5. Sum of angles of triangle T = xn, xn+1, x1 is 180.

6. Sum of angles in X = sum in Y + sum in T

= (n− 2)180 + 180 = (n− 1)180. Basic geometry,

arithmetic.

7. QED UG

4. QED Implication, UG

3. QED Induction
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Prove: ∀n ≥ 0 (P (n))

1. (Base) P (0)

1. ∀k(f(0, k) = (0+k)!
0!k! ) Both sides are 1

2. QED Definition of P (0)

2. (Inductive step) ∀n ≥ 0(P (n)⇒ P (n+ 1))

1. Fix n ≥ 0.

2. Assume P (n), that is, row n is correct.

3. P (n+ 1), that is, row n+ 1 is correct. ???

4. QED Implication, UG

3. QED Induction
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3. P (n+ 1)

1. ∀k(Q(n+ 1, k))

1. (Base) Q(n+ 1,0)

2. (Inductive step) ∀k ≥ 0(Q(n+ 1, k)⇒ Q(n+ 1, k + 1)).

3. QED Induction

2. QED Definition of P (n+ 1)
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1. (Base) Q(n+ 1,0)

1. f(n+ 1,0) = (n+1+0)!
n+1!0! Both sides are 1

2. QED Definition of Q(n+ 1)
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2. (Inductive step) ∀k ≥ 0(Q(n+ 1, k)⇒ Q(n+ 1, k + 1)).

1. Fix k ≥ 0.

2. Assume Q(n+ 1, k).

3. Q(n+ 1, k + 1)

1. f(n+ 1, k + 1) = f(n, k + 1) + f(n+ 1, k)

Definition of f(n+ 1, k + 1)

2. f(n+ 1, k) = (n+1+k)!
(n+1)!k! Inductive hypothesis 2.3.1.2.2,

def. of Q(n+ 1, k).

3. f(n, k + 1) = (n+k+1)!
n!(k+1)! Inductive hypothesis 2.2,

def. of P (n, k + 1).

4. f(n+ 1, k + 1) = (n+k+1)!
n!(k+1)! + (n+1+k)!

(n+1)!k! = (n+1+k+1)!
(n+1)!k+1!

Combine equations, algebra

5. QED Definition of Q(n+ 1, k + 1)

4. QED Induction
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