Prove: $\sqrt{2}$ is irrational.

1. $\sqrt{2}$ rational \Rightarrow false 1. Assume $\sqrt{2}$ rational. 2. false 1. Choose $a, b \in N^+$, $\sqrt{2} = \frac{a}{b}$, lowest terms. Basic prope 2. $2b^2 = a^2$ Algebra 3. a^2 is even. EG, def. of 4. *a* is even. ??? 5. Choose $c \in N$, a = 2c. Def. of "ev 6. $4c^2 = a^2 = 2b^2$ Algebra 7. $2c^2 = b^2$ Algebra 8. b^2 is even. EG, def. of 9. b is even. ??? 10. a and b not in lowest terms. 1.2.4, 1.2.9 11. QED 1.2.1, 1.2.1 3. QED Implication 2. QED Contradicti The proof is by contradiction. Assume for purpose of diction that $\sqrt{2}$ is rational. Then we can write $\sqrt{2} = a/a$ and b are integers and the fraction is in lowest terms ing both sides gives $2 = a^2/b^2$ and so $2b^2 = a^2$. This that a is even; that is, a is a multiple of 2. As a result multiple of 4. Because of the equality $2b^2 = a^2$, $2b^2$ m be a multiple of 4. This implies that b^2 is even and so be even. But since a and b are both even, the fraction a in lowest terms. This is a contradiction, and so the ass that $\sqrt{2}$ is rational must be false.

To prove: $\forall n \ge 0(P(n))$ It's enough to show:

1. (Base) P(0)

2. (Inductive step) $\forall n \ge 0(P(n) \Rightarrow P(n+1))$

To prove: $\forall n \ge k(P(n))$ It's enough to show:

1. (Base) *P*(*k*)

2. (Inductive step) $\forall n \ge k(P(n) \Rightarrow P(n+1))$

Prove:
$$\forall n \ge 0(1+2+3+\ldots+n=\frac{n(n+1)}{2})$$

Prove:
$$\forall n \ge 0(P(n))$$

- 1. (Base) *P*(0)
- 2. (Inductive step) $\forall n \ge 0(P(n) \Rightarrow P(n+1))$
- 3. QED

Ind

Ind

Prove: $\forall n \ge 0(\sum_{i=1}^{n} i = \frac{n(n+1)}{2}).$ 1. (Base) $\sum_{i=1}^{0} i = \frac{0(0+1)}{2}.$

- 2. (Inductive step) $\forall n \ge 0$ ($\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \Rightarrow \sum_{i=1}^{n+1} i =$
- 3. QED

1. (Base)
$$\sum_{i=1}^{0} i = \frac{0(0+1)}{2} (P(0))$$

1. $\sum_{i=1}^{0} i = 0$
2. $\frac{0(0+1)}{2} = 0$
3. QED

Def. of sum Arithmetic By 1.1 and 1

2. (Inductive step)
$$\forall n \ge 0 (\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \Rightarrow \sum_{i=1}^{n+1} i = 1$$
. Fix $n \ge 0$.
2. $\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \Rightarrow \sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$
1. Assume $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
2. $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$
3. QED Imp
3. QED UG

2.
$$\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$$

1. $\sum_{i=1}^{n+1} i = (\sum_{i=1}^{n} i) + (n+1)$ Sum has one ex
2. $(\sum_{i=1}^{n} i) + (n+1) = \frac{n(n+1)}{2} + n + 1$
Inductive hypoth
3. $\frac{n(n+1)}{2} + n + 1 = \frac{(n+1)(n+2)}{2}$ Algebra
4. QED Combine previou

Prove:
$$\forall n \ge 0 \ (P(n))$$

1. (Base) $P(0)$
2. (Inductive step) $\forall n \ge 0 \ (P(n) \Rightarrow P(n+1))$
1. Fix $n \ge 0$
2. $P(n) \Rightarrow P(n+1)$
1. Assume $P(n)$
2. $P(n+1)$
3. QED
3. QED
3. QED
3. QED
4. (P(n))
5. (P(n)) $P(n+1)$
5

Prove: $\forall n \in N, n \ge 0 \ (6|n^3 - n)$ 1. (Base) $6|0^3 - 0$ 2. (Inductive step) $\forall n \ge 0(6|n^3 - n \Rightarrow 6|(n + 1)^3 - (n + 1) + 1)$. Fix $n \ge 0$. 2. Assume $6|n^3 - n$ 3. $6|(n + 1)^3 - (n + 1)$ 4. QED 3. QED 3. QED 3. QED 3. QED 3. General conditions of the second s

Prove:
$$\forall n \in N, n \ge 0(6|n^3 - n)$$

1. (Base) $6|0^3 - 0$
2. (Inductive step) $\forall n \ge 0(6|n^3 - n \Rightarrow 6|(n + 1)^3 - (n + 1)$
1. Fix $n \ge 0$.
2. Assume $6|n^3 - n$
3. $6|(n + 1)^3 - (n + 1)$
1. $(n + 1)^3 - (n + 1) = n^3 - n + 3(n^2 + n)$
Algebra
2. $n^2 + n$ is even
3. $2|n^2 + n$
4. $6|3(n^2 + n)$
5. $6|(n^3 - n) + 3(n^2 + n)$
6. QED
2. 3.1, 2.3.5

4. QED

3. QED

Prove: $\forall n \ge 0 (\sum_{i=0}^{n} F_i^2 = F_n F_{n+1})$ 1. (Base) $\sum_{i=0}^{0} F_i^2 = F_0 F_1$ 2. (Inductive step) $\forall n \ge 0 (\sum_{i=0}^{n} F_i^2 = F_n F_{n+1})$ $\Rightarrow \sum_{i=0}^{n+1} F_i^2 = F_{n+1} F_{n+2}$

3. QED

Prove:
$$\forall n \ge 0(\sum_{i=0}^{n} F_{i}^{2} = F_{n}F_{n+1})$$

1. (Base) $\sum_{i=0}^{0} F_{i}^{2} = F_{0}F_{1}$ Both s
2. (Inductive step) $\forall n \ge 0(\sum_{i=0}^{n} F_{i}^{2} = F_{n}F_{n+1} \Rightarrow \sum_{i=0}^{n+1} F_{n+1})$
1. Fix $n \ge 0$.
2. Assume $\sum_{i=0}^{n} F_{i}^{2} = F_{n}F_{n+1}$
3. $\sum_{i=0}^{n+1} F_{i}^{2} = F_{n+1}F_{n+2}$
1. $\sum_{i=0}^{n+1} F_{i}^{2} = \sum_{i=0}^{n} F_{i}^{2} + F_{n+1}^{2}$ Sum h
2. $\sum_{i=0}^{n} F_{i}^{2} + F_{n+1}^{2} = F_{n}F_{n+1} + F_{n+1}^{2}$ Induct
3. $F_{n}F_{n+1} + F_{n+1}^{2} = F_{n+1}(F_{n} + F_{n+1})$ Algebra
4. $F_{n+1}(F_{n} + F_{n+1}) = F_{n+1}F_{n+2}$ Fibona
5. QED Combined
4. QED Implication
3. QED Induct

Prove: $\forall n \geq 3$ (Sum of interior angles of any *n*-sided convex polygon is (n-2)180 degree

- 1. (Base) Sum of angles in any triangle is 180.
- 2. (Inductive step) $\forall n \geq 3 \ (P(n) \Rightarrow P(n+1))$
 - 1. Fix $n \geq 3$.
 - 2. Assume sum of angles of any n-sided convex points
 - 3. Sum of angles of any n + 1-sided convex poly is
 - 1. Fix any n + 1-vertex convex poly X, say with vertices $x_1, x_2, \ldots, x_{n+1}$
 - 2. Let Y be poly with vertices x_1, x_2, \ldots, x_n (e
 - 3. Y is a convex poly with at least 3 vertices.
 - 4. Sum of angles of Y is (n-2)180.
 - 5. Sum of angles of triangle $T = x_n, x_{n+1}, x_1$
 - 6. Sum of angles in X = sum in Y + sum in= (n-2)180 + 180 = (n-1)180.
 - 7. QED

4. QED

3. QED

Prove: $\forall n \geq 0 \ (P(n))$	
1. (Base) P(0)	
1. $\forall k(f(0,k) = \frac{(0+k)!}{0!k!})$	Bot
2. QED	Def
2. (Inductive step) $\forall n \ge 0(P(n) \Rightarrow P(n+1))$	
1. Fix $n \ge 0$.	
2. Assume $P(n)$, that is, row n is correct.	
3. $P(n+1)$, that is, row $n+1$ is correct.	???
4. QED	Imp
3. QED	Ind

3. P(n+1)1. $\forall k(Q(n+1,k))$ 1. (Base) Q(n+1,0)2. (Inductive step) $\forall k \ge 0(Q(n+1,k) \Rightarrow$ 3. QED Induction 2. QED Definition

1. (Base) Q(n + 1, 0)1. $f(n + 1, 0) = \frac{(n+1+0)!}{n+1!0!}$ 2. QED

Both sides a Definition of

2. (Inductive step) $\forall k \ge 0(Q(n+1,k) \Rightarrow Q(n+1,k+1))$

1. Fix
$$k \ge 0$$
.
2. Assume $Q(n + 1, k)$.
3. $Q(n + 1, k + 1)$
1. $f(n + 1, k + 1) = f(n, k + 1) + f(n + 1, k)$
Definition of
2. $f(n + 1, k) = \frac{(n + 1 + k)!}{(n + 1)!k!}$
3. $f(n, k + 1) = \frac{(n + k + 1)!}{n!(k + 1)!}$
4. $f(n + 1, k + 1) = \frac{(n + k + 1)!}{n!(k + 1)!} + \frac{(n + 1 + k)!}{(n + 1)!k!} = \frac{(n + k + 1)!}{(n + 1)!k!}$
5. QED
4. QED
4. QED
5. QED
5.