
Lecture Overview L4−P. 1

Induction, Strong Induction, and Well-Ordering

Structural induction

Induction and Recursive Algorithms

Sets

Induction, Strong Induction,
and Well-Ordering L4−P. 2

You may state the predicate of the Induction
such that it includes all i’s

Q(n) ∀i, 2 ≤ i ≤ n i can be factored, and prove
Q(n) using ordinary induction.

The induction and strong induction have “iden-
tical power”

Induction, Strong Induction,
and Well-Ordering L4−P. 3

Well-ordering:

Axiom: Every nonempty subset S ⊆ N has a
smallest element

Theorem: Any tournament that contains a cycle
contains a 3-cycle.

Let n be the smallest cycle length in a tourna-
ment.
n must be at least 3.
Suppose n ≥ 4.
Consider the arrow between p1 and p3.
Either close a 3-cycle
or yields a shorter cycle contradicting the as-
sumption that n is smallest...

Structural induction L4−P. 4

Not only induction over N ,
Proofs for data types that are defined recur-
sively

Fully parenthesized Boolean algebra

Definition: the set of fully parenthesized boolean
expressions F
1. 0 and 1
2. if e, e′ ∈ F then (e ∧ e′) ∈ F .
3. if e, e′ ∈ F then (e ∨ e′) ∈ F .
4. if e ∈ F then (¬e) ∈ F .
5. F contains nothing else.

Theorem Every Boolean expression has the same
number of left and right parentheses.

Base: 0 and 1

Inductive step:
steps 1-4 preserve the assertion (if e and e′ sat-
isfy the assertion so does the result).

Structural induction,
Binary trees L4−P. 5

Definition: the set of binary trees T
1. A single node is in T
2. if t is in T , then an addition of a root node
r and an arrow connecting t to be the left child
(subtree) of the root is also in T
3. if t is in T , then an addition of a root node r
and an arrow connecting t to be the right child
(subtree) of the root is also in T
4. if t and t′ are in T , then an addition of a root
node r and two arrows, where t is the left child
and t′ is the right child is also in T

Structural induction,
Binary trees L4−P. 6

Theorem: The number of edges in any binary
tree is exactly one fewer than the number of
nodes.

Base: a single-node tree

Inductive step:
Steps 2 and 3 of the construction preserves the
assertion:
—- t has n − 1 edges and a node and an edge
are added.
Steps 4 of the construction preserves the asser-
tion:
—- t and t′ has n− 1 and n′− 1 edges, respec-
tively. 1 node is added (total n+ n′ + 1) and 2
edges are added (total (n− 1) + (n′− 1) + 2 =
n + n′ edges).

Structural induction,
Strings over alphabet A L4−P. 7

Definition: the set S of (finite length) strings
over alphabet A:
1. λ, the empty string, is in S.
2. If s is in the set S and a ∈ A, then sa is in
S.
3. S contains nothing else.

To prove a property P (s) for strings over alpha-
bet A = {0, 1}:

Prove: ∀s ∈ S(P (s))
1. (Base) P (λ)
2. (Inductive step) ∀s ∈ S (P (s)⇒ P (s0))
3. (Inductive step) ∀s ∈ S (P (s)⇒ P (s1))
4. QED Structural induction on strings.

Structural induction,
Strings over alphabet A L4−P. 8

Theorem: In a string of 0s and 1s, the number
of occurrence of the pattern 01 num(01, s) is
less than or equal to the number of occurrence
of 10 num(10, s), plus one.

It turned out that it is better to have a stronger
induction predicate.
(Adding 1 at the end may increase num(01, s))

num(01, s) ≤ num(10, s) + 1, and
If s ends in 0 then num(01, s) ≤ num(10, s)
(Thus, addition of 1 at the end will not violate
our main predicate).

Base: λ
Step:
1. (*(Inductive step) ∀s ∈ S (P (s)⇒ P (s0))*)

1a. if s ends in 0 then num(01, s0) = num(01, s)
and num(10, s0) = num(10, s)
o.k.

1b. if s ends in 1 then num(01, s0) = num(01, s)
and num(10, s0) = num(10, s) + 1
We should show that num(01, s0) ≤ num(10, s0)
given
num(01, s) ≤ num(10, s) + 1, replacing terms
we get
num(01, s0) ≤ num(10, s0) as needed.

2. (*(Inductive step) ∀s ∈ S (P (s)⇒ P (s1))*)

2a. if s ends in 0 then num(01, s1) = num(01, s)+
1 and num(10, s1) = num(10, s)
We should show that num(01, s1) ≤ num(10, s1)+
1 given
num(01, s) ≤ num(10, s), replacing terms we
get
num(01, s1)− 1 ≤ num(10, s1) as required

2b. if s ends in 1 then num(01, s1) = num(01, s)
and num(10, s1) = num(10, s)
o.k.

Induction and Recursive
Algorithms L4−P. 10

Why use induction?
Induction and computation is one step at a time.

Can any 2n by 2n board be tiled with Ls ?
the inductive proof is actually a procedure:
break the board to four, tile each piece, and
merge the tiling.

This is a recursive algorithm — it calls itself on
smaller subproblems.

The ranking B, L and x is similar.

Induction and Recursive Algorithms –
RSA and Exponentiation L4−P. 11

RSA is used in secure communication protocols
SSH, SSL, etc.

Computes remainder r of xa on division by b,
where a and b are specially constructed large
numbers.

If you know the right secret about the origin of
a and b then you get x.

We will try to calculate the Exponentiation:

x0 = 1
xn = x · xn−1

Procedure Exp(x, n)

if n = 0
return 1
else
return x ∗ Exp(x, n− 1)

Induction and Recursive Algorithms –
Exponentiation L4−P. 12

Theorem: For all x, n ∈ N , a call to Exp(x, n)
returns xn

We should prove that the algorithm does not
run forever

The algorithm returns the right value

By induction on n
Base: Exp(x, 0) = x0 = 1
Step: Assume Exp(x, n) returns xn and prove
for Exp(x, n + 1)
the else is chosen calling Exp(x, n), which re-
turns xn,
thus we return xn+1.

n has 128 bits, we should call the procedure 2128

times........

Induction and Recursive Algorithms –
Fast Exponentiation L4−P. 13

if xa = x2c (a is even)
then compute y = xc and then y2.

Otherwise, (a is odd)
then compute y = xa−1 and then y · x.

Procedure FastExp(x, n)

if n = 0
return 1
else
if n is even

let y = FastExp(x, n/2)

return y2

else
let y = FastExp(x, (n− 1)/2)

return x ∗ y2

Induction and Recursive Algorithms –
Fast Exponentiation L4−P. 14

Theorem: For all x, n ∈ N , a call to FastExp(x, n)
returns xn

Base: n = 0
Step: (strong induction) true for every k < n
and prove for n
n is even, say n = 2m then we call FastExp(x,m),
by strong induction y = xm, thus we return
(xm)2 = xn as required.
n is odd, say n = 2m+1 then we call FastExp(x,m),
by strong induction y = xm, thus we return
x · (xm)2 = x2m+1

Proof works for all cases.

Induction and Recursive Algorithms –
Fast Exponentiation Cont. L4−P. 15

no more than 256 multiplications ...

Theorem: If n > 1 has b bits, then FastExp(x, n)
performs at most 2b multiplications.

Base: b = 2 then n = 0, n = 1, n = 2, n = 3
if n = 0 then we do not multiply
if n = 1 we multiply 3 < 4 times (x · 12)
if n = 2 we multiply 2 < 4 times (y2)
if n = 3 we multiply 3 < 4 times (x · x2)

Step: we assume b and prove for b + 1
We execute recursive call with n/2 or (n− 1)/2
both have b bits, by induction 2b multiplica-
tions.
Then we do either 1 (even case) or 2 more (odd
case) multiplications.
Thus overall at most 2b + 2

Induction and Recursive Algorithms –
Greatest Common Divisor L4−P. 16

Given 2 positive natural numbers, a, b ∈ N+,
their greatest common divisor (GCD) is the
largest number that divides both without re-
mainder.

Euclid’s algorithm

Lemma: Given x > y, let r = x− y. Then any
common divisor of x and y is also a common
divisor of y and r, and vice versa.

Proof: Suppose d|x and d|y. So x = zd and
y = wd. Thus, r = x− y = d(z − w).
Suppose d|y and d|r then x = y + r = wd +
ud = (w + u)d.

Corollary: GCD(x, y) =GCD(y, r)

Proof: Since (x, y) and (y, r) have exactly the
same set of divisors, the biggest number in each
set is identical.

Induction and Recursive Algorithms –
Greatest Common Divisor L4−P. 17

So?

Procedure Euclid(x, y)

if x = 0 return y
else if y = 0 return x
else if x > y return Euclid(y, x− y)
else return Euclid(x, y − x))

Example:
Find GCD(112, 84) = ?
Step 1: 112− 84 = 28, reduce to (28, 84).
Step 2: 84− 28 = 56, reduce to (28, 56).
Step 3: 56− 28 = 28, reduce to (28, 28).
Step 4: 28− 28 = 0, reduce to 28, 0
Now done, answer is 28.

Induction and Recursive Algorithms –
Greatest Common Divisor L4−P. 18

First prove that the algorithm terminates

Lemma For any natural number inputs x and
y, Euclid(x, y) returns a value.

Induction on x + y

if x + y = 0 then we return immediately
Assume for x+ y < n and prove for x+ y = n
We either return (when x or y equal 0) or call
with smaller x + y.

Lemma For any natural number inputs x and
y, Euclid(x, y) returns GCD(x, y).

Induction on x + y

Base: GCD(0,0)=0 (*in fact we need GCD(x,0)=x*)
Step: x+y = n > 0, assume without loss of gen-
erality x ≥ y. Return the result onEuclid(y, x−
y) (strong induction) and lemma complete the
proof.

Sets L4−P. 19

A set is a collection of objects.

Order is not important {1, 2} and {2, 1} are
the same set.

Element is included once {a, a, b} and {a, b}
are the same set.

Examples of sets:
{1,2,3}
∅ the empty set.
{ ∅ } a set with one element, which is a set.
{1,{1,2}} an element is included only once
{n ∈ N |n is even}, in general domain D and
predicate P over D, {x ∈ D|P (x)} the set of
all x in D that satisfy P

a ∈ A in words a is an element of A,
(∀x)x 6∈ ∅.

Subsets L4−P. 20

A ⊆ B (“A is a subset of B” or “A is contained
in B”) if every element of A is also an element
of B
(∀x)(x ∈ A→ x ∈ B)).
A is a proper subset of B (A ⊂ B) if A ⊆ B
and A 6= B.

Note (∀X)∅ ⊆ X , i.e. the empty set is con-
tained in any other set.

Sets – Definitions L4−P. 21

A = B if and only if A ⊆ B and B ⊆ A.

To prove that the sets {n ∈ N |2 divides n}
and {2n|n ∈ N} are equal we show contain-
ment in both ways:

⊆:
Assume x ∈ N and 2 divides x and show that
∃y ∈ N s.t. x = 2y.
⊇:
Assume x = 2y then x is divisible by 2.

The size of a set A — the number of elements
in A is |A|.
|{a, b, c}| = 3, |∅| = 0, the size of an infinite set
is ∞.

|A ∪B| ≤ |A| + |B| (equal when A ∩B = ∅)
holds for infinite sets when x +∞ =∞.

Basic set operations L4−P. 22

Union — A ∪B = {x|x ∈ A or x ∈ B}.
∪ni=1Ai
i = 0 results in ∅
Intersection — A∩B = {x|x ∈ A and x ∈ B}.
∩ni=1Ai
i = 0 results in U the universal set.

Difference — A−B = {x|x ∈ A and x 6∈ B}.
(or A \B)

Complement — Ac = {x|x 6∈ A}.
(or Ā).
Ac = U − A.

Symmetric difference —A⊕B = A∪B−A∩B.

Venn diagrams

Predicates and sets L4−P. 23

Given predicates p and q,
P = {x | p(x)},
Q = {x | q(x)}.
Then P ∪Q = {x | p(x) ∨ q(x)}.
P ∩Q = {x | p(x) ∧ q(x)}.
Etc.

Power set (set of all subsets) L4−P. 24

P(A) the set of all subsets of A.
In other words, P(A) = {x|x ⊆ A}.

∅ ∈ P(A) and A ∈ P(A).

IfA = {1, 2} thenP(A) = {∅, {1}, {2}, {1, 2}}.
IfA has n elements, then P(A) has 2n elements.

Induction on n
Base: n = 0 P(A) = {∅}.
Step: let a be the “new” element
P(A) contains all subsets without a which are
2n−1 subsets
for each such subset a subset that includes a.
2n−1 · 2.
(the number of binary words with n bits).

P(A) can be denoted 2A.

Set identities L4−P. 25

(Distributivity: Union distributes over intersec-
tion)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

We show that each is contained in the other

1. A ∪ (B ∩ C) ⊆ (A ∪B) ∩ (A ∪ C).

Suppose x ∈ A ∪ (B ∩ C).
Then, x ∈ A or x ∈ (B ∩ C).
We argue by cases.

If x ∈ A, then x ∈ A ∪ B and similarly x ∈
A ∪ C.
By definition of intersection x is in the intersec-
tion of these two sets.

On the other hand, if x ∈ (B ∩C), then x ∈ B
and x ∈ C.
By definition of union, x ∈ A ∪ B and x ∈
A ∪ C.
It again follows that x is in the intersection.

2. A ∪ (B ∩ C) ⊇ (A ∪B) ∩ (A ∪ C).

Suppose x ∈ (A ∪B) ∩ (A ∪ C).
It follows that x ∈ A ∪B and x ∈ A ∪ C.
We argue by cases.

If x ∈ A, then certainly x ∈ A ∪ (B ∩ C).

If x /∈ A, then since x ∈ A ∪ B, we know
x ∈ B.
Similarly, x ∈ C.
Therefore, x ∈ B ∩ C.
It follows that x ∈ A ∪ (B ∩ C).

Set identities –
De Morgan’s rule L4−P. 27

(A ∪B)c = Ac ∩Bc.
We have to show that (A∪B)c ⊆ Ac∩Bc and
that Ac ∩Bc ⊆ (A ∪B)c.

1. (A ∪B)c ⊆ Ac ∩Bc.
Let x ∈ (A ∪B)c.
By definition of complement, x /∈ A ∪B.
(proof by contradiction) x /∈ A and x /∈ B.
By definition of complement, x ∈ Ac and x ∈
Bc.
Then by definition of intersection, x ∈ Ac∩Bc.
2. Ac ∩Bc ⊆ (A ∪B)c.

Let x ∈ Ac ∩Bc.
Then x is in Ac and in Bc.
Therefore, x is in neither A nor B and therefore
not in A ∪B.
We conclude that x ∈ (A ∪B)c.

Dual holds, swapping ∪ with ∩ and ∅ with U .

Cartesian products L4−P. 28

A×B = {(a, b)|a ∈ A and b ∈ B}.
(a, b) is an ordered pair 6= (b, a).

A = {0, 1} and B = {x, y} then {A × B} =
{(0, x), (0, y), (1, x), (1, y)}.
Generalize Cartesian products
A1×· · ·×An =

∏n
i=1Ai = {(a1, · · · , an)|ai ∈

Ai for 1 ≤ i ≤ n}.
Also, An is

∏n
i=1A.

Examples:
{0, 1}n is the set of all n-tuples of 0’s and 1’s.
Or, length n strings of 0’s and 1’s.

<2 = <× < is the real plane.

