
Massachusetts Institute of Technology Handout 24
6.042J/18.062J: Mathematics for Computer Science October 13, 2000
Professors Nancy Lynch and Srinivas Devadas

Tutorial 6 Problems

Problem 1 Concurrent reads in Split-SC

In class, we discussed a version of SC , Split-SC , that together with Env behaves like CM . This
was achieved through the use of locks. Each read/write access to a location sets a lock on that
location and no further read/writes are possible on that location till the lock is released. Although
this works correctly, it is inefficient as it forces the reads to happen sequentially, which is really not
necessary (convince yourself about this). Modify the behavior of Env to allow concurrent reads.

The original specification of Env is reproduced below:

Q: locks, a mapping from A to I,
indicating for each memory address, which caches have currently active operations
Q0: for all a, locks(a) = ∅
L: Input and output reverse those of Split-SC :

Input:
respond(v, i), v ∈ V , i ∈ I
respond(OK , i), i ∈ I

Output:
request(read(a), i), a ∈ A, i ∈ I
request(write(a, v), i), a ∈ A, v ∈ V , i ∈ I

Internal: None

Transitions:
respond(∗, i)
Can occur: anytime
Effect: for all a, locks(a) := locks(a)− {i}

(That is, throw away locks held by i.)

request(read(a), i)
Can occur: locks(a) = ∅
Effect: locks(a) := {i}
request(write(a, v), i)
Can occur: locks(a) = ∅
Effect: locks(a) := {i}

Solution:

The only transition of Env that needs to be changed is:

request(read(a),i)



2 Handout 24: Tutorial 6 Problems

Can occur: locks(a) = ∅
Effect: Nothing

In other words, now we no longer place a lock on a location if it’s a read operation. It’s clear that
the composition of Split-SC and Env still implements CM .


