End-of-term Survey

This survey asks for your feedback on how well 6.042J/18.062J helped you learn and appreciate the subject, and for any improvements you care to suggest. We also encourage you to submit an MIT subject evaluation which asks a different set of questions.

We can make best use of your response if it is signed, but you may submit this form anonymously. (It would still be helpful if you would indicate your Table & Session Time.)

Your Name: ________________
Circle your session time: 1PM 2:30PM Table letter/number: ________

Course Activities

Please indicate with a digit how helpful the following features of 6.042 were to you in learning the class material, where digits from five (5) to one (1) mean

<table>
<thead>
<tr>
<th>5 very</th>
<th>4 moderately</th>
<th>3 somewhat</th>
<th>2 barely</th>
<th>1 not</th>
</tr>
</thead>
<tbody>
<tr>
<td>feature</td>
<td>value</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Before Class

The Math for CS text
online tutor problems
watching lecture videos before class
reading lecture slides before class
Piazza class forum

During Class

team problem-solving in class
TA/LA in class
Prof. Meyer during team-problem solving
reading lecture slides during class
daily microquizzes
weekly miniquizzes
midterm exams

After Class

reviewing team problem solutions
reading lecture slides after class
watching lecture videos after class
doing problem sets
reviewing problem set solutions
collaborating on psets
staff outside class (office hours/email/...)
Piazza class forum
Learning Outcomes

Please indicate with a digit how thoroughly the following outcomes were personally achieved for yourself in taking 6.042, where digits from five (5) to one (1) mean the outcome was

| 5 thoroughly | 4 adequately | 3 somewhat | 2 barely | 1 not |

Upon completion of 6.042, students will be able to:

1. read and use **logical notation** in definitions and proofs.
2. reason about logical concepts such as **validity and satisfiability**
3. know the definitions and elementary properties of basic math concepts such as **sets, relations, and functions**.
4. create elementary **mathematical proofs** and identify fallacious **reasoning** (not just fallacious conclusions).
5. use the **well ordering principle** in simple proofs.
6. synthesize **induction hypotheses** and simple proofs using various forms of **induction**.
7. apply the method of invariants to prove correctness and termination of **state machines** and processes.
8. do calculations and prove elementary properties for **modular arithmetic**. Explain applications of modular arithmetic in **cryptography**.
9. apply **graph theory** models of data structures to solve problems of matching, scheduling and connectivity.
10. compare asymptotic growth rates of elementary functions and explain properties **asymptotic relations** such as O() and o().
11. find **counting formulas** for **permutations and combinations** and other simple combinatorial objects.
12. use **generating functions** to solve linear recurrences and elementary counting problems.
13. define and prove properties of elementary **discrete probability** models; calculate probabilities and conditional probabilities of events.
14. define **random variables**, calculate **expectations**, and explain their use in **sampling**; explain **confidence levels**
15. problem-solve in a **small team** with fellow students.
16. **write** brief, clear **explanations** and solutions for problems
Further Comments

How interested would you be in having another class in the team-problem/recorded-lecture style of 6.042?

enthusiastic interested somewhat interested uninterested unwilling

How interested would you be in serving as a 6.042 LA in some future term?

enthusiastic interested somewhat interested uninterested unwilling

We would be pleased to hear any other comments or suggestions you may have about the course: