Properties of relations

A relation from A to B is:

- a function if every element of A is assigned to at most one element of B,
- total when every element of A is assigned to at least one element of B,
- surjective if every element of B is assigned to at least one element of A,
- injective if every element of B is mapped at most once, and
- bijective if it is total, surjective, injective, and a function.

Properties of a relation on A:

Reflexivity R is reflexive if

$$\forall x \in A. \ xRx.$$
“Everyone likes themselves.”
Every node in G has a loop.

Irreflexivity R is irreflexive if

$$\neg \exists x \in A. \ xRx.$$
“No one likes themselves.”
There are no loops in G.

Symmetry R is symmetric if

$$\forall x, y \in A. \ xRy \Rightarrow yRx.$$
“If x likes y, then y likes x.”
If there is an edge from x to y in G, then there is an edge from y to x in G as well.

Antisymmetry R is antisymmetric if

$$\forall x, y \in A. \ (xRy \land yRx) \Rightarrow x = y.$$
“No pair of distinct people like each other.”
There is at most one directed edge between any pair of distinct nodes.

Transitivity R is transitive if

$$\forall x, y, z \in A. \ (xRy \land yRz) \Rightarrow xRz.$$
“If x likes y and y likes z, then x likes z too.”
For any walk v_0, v_1, \ldots, v_k in G where $k \geq 2$, $v_0 \rightarrow v_k$ is in G (and, hence, $v_i \rightarrow v_j$ is also in G for all $i < j$).