Problems for Recitation 14

1 TriMergeSort

We noted in lecture that reducing the size of subproblems is much more important to the speed of an algorithm than reducing the number of additional steps per call. Let’s see if we can improve the $\Theta(n \log n)$ bound on MergeSort from lecture.

Let’s consider a new version of MergeSort called TriMergeSort, where the size n list is now broken into three sublists of size $n/3$, which are sorted recursively and then merged. Since we know that floors and ceilings do not affect the asymptotic solution to a recurrence, let’s assume that n is a power of 3.

1. How many comparisons are needed to merge three lists of 1 item each?

2. In the worst case, how many comparisons are needed to merge three lists of $n/3$ items, where n is a power of 3?

3. Define a divide-and-conquer recurrence for this algorithm. Let $T(n)$ be the number of comparisons to sort a list of n items.

4. We could analyze the running time of this using plug-and-chug, but let’s try Akra-Bazzi. First, what is p?
5. Does the condition $|g'(x)| = O(x^c)$ hold for some $c \in N$?

6. Determine the theta bound on $T(n)$ by integration.

7. Turns out that any equal partition of the list into a constant number of sublists $c > 1$ will yield the same theta bound. Can you see why?
2 Plug and Chug

Suppose you put $1000 in a bank account. At the end of each month, you earn 1% interest and then you immediately withdraw $5. Let M_n be the amount of money in the account after n months.

1. Express the amount in the account after n months with a recurrence and base cases.

2. Now were going to find a closed form for M_n using the plug and chug method. Rewrite M_n in terms of smaller and smaller M_i by applying the recurrence equation over and over. Stop when you uncover a pattern. Simplify enough to keep the expressions manageable, but not so much that you destroy the pattern!

3. Based on the pattern you observed, what expression would you have after k rounds of plug-and-chug?

4. Use your expression from the previous part, which is written in terms of k, to write M_n entirely in terms of the base cases.

5. Find a closed-form for M_n by applying summation techniques to your expression and substituting in base cases.
Appendix

Theorem 1 (Akra-Bazzi, strong form). *Suppose that:*

\[
T(x) = \begin{cases}
 \text{is defined} & \text{for } 0 \leq x \leq x_0 \\
 \sum_{i=1}^{k} a_i T(b_i x + h_i(x)) + g(x) & \text{for } x > x_0
\end{cases}
\]

where:

- a_1, \ldots, a_k are positive constants
- b_1, \ldots, b_k are constants between 0 and 1
- x_0 is “large enough” in a technical sense we leave unspecified
- $|g'(x)| = O(x^c)$ for some $c \in \mathbb{N}$
- $|h_i(x)| = O(x / \log^2 x)$

Then:

\[
T(x) = \Theta \left(x^p \left(1 + \int_1^x \frac{g(u)}{u^p+1} \, du \right) \right)
\]

where p satisfies the equation $\sum_{i=1}^{k} a_i b_i^p = 1.$