Problems for Recitation 13

1 Asymptotic Notation

Which of these symbols \(\Theta \), \(O \), \(\Omega \), \(o \), \(\omega \) can go in these boxes? (List all that apply.)

\[
\begin{align*}
2n + \log n & = \Theta(n) \\
\log n & = \Theta(n) \\
\sqrt{n} & = \Theta(\log^{300} n) \\
n2^n & = \Theta(n) \\
n^7 & = \Theta(1.01^n)
\end{align*}
\]
2 Asymptotic Equivalence

Suppose \(f, g : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+ \) and \(f \sim g \).

1. Prove that \(2f \sim 2g \).
2. Prove that \(f^2 \sim g^2 \).
3. Give examples of \(f \) and \(g \) such that \(2f \not\sim 2g \).
4. Show that \(\sim \) is an equivalence relation
5. Show that \(\Theta \) is an equivalence relation

3 More Asymptotic Notation

1. Show that
 \[(an)^{b/n} \sim 1.\]
 where \(a, b \) are positive constants and \(\sim \) denotes asymptotic equality. Hint \(an = a2^{\log_2 n} \).
2. You may assume that if \(f(n) \geq 1 \) and \(g(n) \geq 1 \) for all \(n \), then \(f \sim g \Rightarrow f^{1/n} \sim g^{1/n} \).
 Show that
 \[\sqrt[n]{n!} = \Theta(n).\]