Staff Solutions to In-Class Problems Week 14, Fri.

STAFF NOTE: Variance & Deviation from the Mean

Problem 1.
A herd of cows is stricken by an outbreak of cold cow disease. The disease lowers the normal body temperature of a cow, and a cow will die if its temperature goes below 90 degrees F. The disease epidemic is so intense that it lowered the average temperature of the herd to 85 degrees. Body temperatures as low as 70 degrees, but no lower, were actually found in the herd.

(a) Prove that at most 3/4 of the cows could have survived.

Hint: Let T be the temperature of a random cow. Make use of Markov’s bound.

Solution. Let T be the temperature of a random cow. Then the fraction of cows that survive is the probability that $T \geq 90$, and $\text{Ex}[T]$ is the average temperature of the herd.

Applying Markov’s Bound to T:

$$\Pr[T \geq 90] \leq \frac{\text{Ex}[T]}{90} = \frac{85}{90} = \frac{17}{18}.$$

But $17/18 > 3/4$, so this bound is not good enough.

Instead, we apply Markov’s Bound to $T - 70$:

$$\Pr[T \geq 90] = \Pr[T - 70 \geq 20] \leq \frac{\text{Ex}[T - 70]}{20} = \frac{(85 - 70)}{20} = 3/4.$$

(b) Suppose there are 400 cows in the herd. Show that the bound of part (a) is best possible by giving an example set of temperatures for the cows so that the average herd temperature is 85, and with probability 3/4, a randomly chosen cow will have a high enough temperature to survive.

Solution. Let 100 cows have temperature 70 degrees and 300 have 90 degrees. So the probability that a random cow has a high enough temperature to survive is exactly 3/4. Also, the mean temperature is

$$(1/4)70 + (3/4)90 = 85.$$

So this distribution of temperatures satisfies the conditions under which the Markov bound implies that the probability of having a high enough temperature to survive cannot be larger than 3/4.

Problem 2.
A gambler plays 120 hands of draw poker, 60 hands of black jack, and 20 hands of stud poker per day. He wins a hand of draw poker with probability 1/6, a hand of black jack with probability 1/2, and a hand of stud poker with probability 1/5.
(a) What is the expected number of hands the gambler wins in a day?

Solution.\[120(1/6) + 60(1/2) + 20(1/5) = 54.\]

(b) What would the Markov bound be on the probability that the gambler will win at least 108 hands on a given day?

Solution. The expected number of games won is 54, so by Markov, \[\Pr[R \geq 108] \leq \frac{54}{108} = 1/2.\]

(c) Assume the outcomes of the card games are pairwise independent. What is the variance in the number of hands won per day?

Solution. The variance can also be calculated using linearity of variance. For an individual hand the variance is \(p(1-p)\) where \(p\) is the probability of winning. Therefore the variance is

\[
120(1/6)(5/6) + 60(1/2)(1/2) + 20(1/5)(4/5) = \frac{523}{15} = 34\frac{13}{15}.
\]

(d) What would the Chebyshev bound be on the probability that the gambler will win at least 108 hands on a given day? You may answer with a numerical expression that is not completely evaluated.

Solution.

\[
\Pr[R \geq 108] = \Pr[R - 54 \geq 54] \leq \Pr[|R - 54| \geq 54] \leq \frac{\text{Var}[R]}{(54)^2} = \frac{523}{15(54)^2} \approx 0.01196.
\]

Problem 3.

The proof of the Pairwise Independent Sampling Theorem 18.5.1 was given for a sequence \(R_1, R_2, \ldots\) of pairwise independent random variables with the same mean and variance.

The theorem generalizes straightforwardly to sequences of pairwise independent random variables, possibly with different distributions, as long as all their variances are bounded by some constant.

Theorem (Generalized Pairwise Independent Sampling). Let \(X_1, X_2, \ldots\) be a sequence of pairwise independent random variables such that \(\text{Var}[X_i] \leq b\) for some \(b \geq 0\) and all \(i \geq 1\). Let

\[
A_n := \frac{X_1 + X_2 + \cdots + X_n}{n},
\]

\[
\mu_n := \text{Ex}[A_n].
\]

Then for every \(\epsilon > 0\),

\[
\Pr[|A_n - \mu_n| > \epsilon] \leq \frac{b}{\epsilon^2} \cdot \frac{1}{n}. \tag{1}
\]

(a) Prove the Generalized Pairwise Independent Sampling Theorem.

Solution. Essentially identical to the proof of Theorem 18.5.1 in the text, except that \(G\) gets replaced by \(X\) and \(\text{Var}[G_i]\) by \(b\), with the equality where the \(b\) is first used becoming \(\leq\).

(b) Conclude that the following holds:
Corollary (Generalized Weak Law of Large Numbers). For every \(\epsilon > 0 \),
\[
\lim_{n \to \infty} \Pr[|A_n - \mu_n| \leq \epsilon] = 1.
\]

Solution.
\[
\Pr[|A_n - \mu_n| \leq \epsilon] = 1 - \Pr[|A_n - \mu_n| > \epsilon] \\
\geq 1 - \frac{b}{(n\epsilon^2)} \quad \text{(by (1))},
\]
and for any fixed \(\epsilon \), this last term approaches 1 as \(n \) approaches infinity.

Problem 4.
For any random variable, \(R \), with mean, \(\mu \), and standard deviation, \(\sigma \), the Chebyshev Bound says that for any real number \(x > 0 \),
\[
\Pr[|R - \mu| \geq x] \leq \left(\frac{\sigma}{x} \right)^2.
\]
Show that for any real number, \(\mu \), and real numbers \(x \geq \sigma > 0 \), there is an \(R \) for which the Chebyshev Bound is tight, that is,
\[
\Pr[|R| \geq x] = \left(\frac{\sigma}{x} \right)^2.
\]

Hint: First assume \(\mu = 0 \) and let \(R \) only take values \(0, -x, x \).

Solution. From the hint, we aim to find an \(R \) with \(\text{Ex}[R] = 0 \) and \(\text{Var}[R] = \sigma^2 \) that satisfies equation (2).

Using the further hint that \(R \) takes only values \(0, -x, x \), we have
\[
0 = \text{Ex}[R] = x \Pr[R = x] - x \Pr[R = -x] = x (\Pr[R = x] - \Pr[R = -x])
\]
so
\[
\Pr[R = x] = \Pr[R = -x],
\]
since \(x > 0 \). Also,
\[
\sigma^2 = \text{Ex}[R^2] = x^2 \Pr[R = -x] + x^2 \Pr[R = x] = 2x^2 \Pr[R = x],
\]
so
\[
\Pr[R = x] = \frac{\sigma^2}{2x^2}.
\]
This implies
\[
\Pr[R = 0] = 1 - 2 \Pr[R = x] = 1 - \left(\frac{\sigma}{x} \right)^2,
\]
which completely determines the distribution of \(R \). Moreover,
\[
\Pr[|R| \geq x] = \Pr[R = -x] + \Pr[R = x] = 2 \Pr[R = x] = \left(\frac{\sigma}{x} \right)^2
\]
which confirms (2).

Finally, given \(\mu, x, \) and \(\sigma \), if we let \(R' := R + \mu \), then \(R' \) will be the desired random variable for which the Chebyshev Bound is tight.
Pairwise Independent Sampling

Let R be a random variable, and a a constant. Then

$$\text{Var}[aR] = a^2 \text{Var}[R].$$

(4)

Theorem (Pairwise Independent Sampling). Let G_1, \ldots, G_n be pairwise independent variables with the same mean, μ, and deviation, σ. Define

$$S_n := \sum_{i=1}^{n} G_i.$$

Then

$$\Pr\left[\left| \frac{S_n}{n} - \mu \right| \geq x \right] \leq \frac{1}{n} \left(\frac{\sigma}{x} \right)^2.$$

Proof.

$$\text{Ex} \left[\frac{S_n}{n} \right] = \text{Ex} \left[\sum_{i=1}^{n} \frac{G_i}{n} \right]$$

(def of S_n)

$$= \sum_{i=1}^{n} \frac{\text{Ex}[G_i]}{n}$$

(linearity of expectation)

$$= \sum_{i=1}^{n} \frac{\mu}{n}$$

$$= \frac{n \mu}{n} = \mu.$$

$$\text{Var} \left[\frac{S_n}{n} \right] = \left(\frac{1}{n} \right)^2 \text{Var}[S_n]$$

(by (4))

$$= \frac{1}{n^2} \text{Var} \left[\sum_{i=1}^{n} G_i \right]$$

(def of S_n)

$$= \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}[G_i]$$

(pairwise independent additivity)

$$= \frac{1}{n^2} \cdot n \sigma^2 = \frac{\sigma^2}{n}.$$

(5)

This is enough to apply Chebyshev’s Theorem and conclude:

$$\Pr \left[\left| \frac{S_n}{n} - \mu \right| \geq x \right] \leq \frac{\text{Var}[S_n/n]}{x^2}.$$

(Chebyshev’s bound)

$$= \frac{\sigma^2/n}{x^2}$$

(by (5))

$$= \frac{1}{n} \left(\frac{\sigma}{x} \right)^2.$$

\[\blacksquare\]