Problem Set 4

Due: Monday, October 4 (7pm)

Problem 1. [15 points] Let $G = (V, E)$ be a graph. A matching in G is a set $M \subset E$ such that no two edges in M are incident on a common vertex.

Let M_1, M_2 be two matchings of G. Consider the new graph $G' = (V, M_1 \cup M_2)$ (i.e. on the same vertex set, whose edges consist of all the edges that appear in either M_1 or M_2). Show that G' is bipartite.

Helpful definition: A connected component is a subgraph of a graph consisting of some vertex and every node and edge that is connected to that vertex.

Problem 2. [20 points] Let $G = (V, E)$ be a graph. Recall that the degree of a vertex $v \in V$, denoted $d(v)$, is the number of vertices w such that there is an edge between v and w.

(a) [10 pts] Prove that $2|E| = \sum_{v \in V} d(v)$.

(b) [5 pts] At a 6.042 ice cream study session (where the ice cream is plentiful and it helps you study too) 111 students showed up. During the session, some students shook hands with each other (everybody being happy and content with the ice-cream and all). Turns out that the University of Chicago did another spectacular study here, and counted that each student shook hands with exactly 17 other students. Can you debunk this too?

(c) [5 pts] And on a more dull note, how many edges does K_n, the complete graph on n vertices, have?

Problem 3. [15 points] Two graphs are isomorphic if they are the same up to a relabeling of their vertices (see Definition 5.1.3 in the book). A property of a graph is said to be preserved under isomorphism if whenever G has that property, every graph isomorphic to G also has that property. For example, the property of having five vertices is preserved under isomorphism: if G has five vertices then every graph isomorphic to G also has five vertices.

(a) [5 pts] Some properties of a simple graph, G, are described below. Which of these properties is preserved under isomorphism?
1. \(G \) has an even number of vertices.
2. None of the vertices of \(G \) is an even integer.
3. \(G \) has a vertex of degree 3.
4. \(G \) has exactly one vertex of degree 3.

(b) [10 pts] Determine which among the four graphs pictured in the Figures are isomorphic. If two of these graphs are isomorphic, describe an isomorphism between them. If they are not, give a property that is preserved under isomorphism such that one graph has the property, but the other does not. For at least one of the properties you choose, prove that it is indeed preserved under isomorphism (you only need prove one of them).

![Graphs](image)

Figure 1: Which graphs are isomorphic?

Problem 4. [15 points] Recall that a **coloring** of a simple graph is an assignment of a color to each vertex such that no two adjacent vertices have the same color. A **\(k \)-coloring** is a coloring that uses at most \(k \) colors.

False Claim. Let \(G \) be a (simple) graph with maximum degree at most \(k \). If \(G \) also has a vertex of degree less than \(k \), then \(G \) is **\(k \)-colorable**.

(a) [5 pts] Give a counterexample to the False Claim when \(k = 2 \).

(b) [10 pts] Consider the following proof of the False Claim:
Proof. Proof by induction on the number \(n \) of vertices:

Induction hypothesis: \(P(n) \) is defined to be: Let \(G \) be a graph with \(n \) vertices and maximum degree a most \(k \). If \(G \) also has a vertex of degree less than \(k \), then \(G \) is \(k \)-colorable.

Base case: \((n=1)\) \(G \) has only one vertex and so is 1-colorable. So \(P(1) \) holds.

Inductive step:

We may assume \(P(n) \). To prove \(P(n+1) \), let \(G_{n+1} \) be a graph with \(n+1 \) vertices and maximum degree at most \(k \). Also, suppose \(G_{n+1} \) has a vertex, \(v \), of degree less than \(k \). We need only prove that \(G_{n+1} \) is \(k \)-colorable.

To do this, first remove the vertex \(v \) to produce a graph, \(G_n \), with \(n \) vertices. Removing \(v \) reduces the degree of all vertices adjacent to \(v \) by 1. So in \(G_n \), each of these vertices has degree less than \(k \). Also the maximum degree of \(G_n \) remains at most \(k \). So \(G_n \) satisfies the conditions of the induction hypothesis \(P(n) \). We conclude that \(G_n \) is \(k \)-colorable.

Now a \(k \)-coloring of \(G_n \) gives a coloring of all the vertices of \(G_{n+1} \), except for \(v \). Since \(v \) has degree less than \(k \), there will be fewer than \(k \) colors assigned to the nodes adjacent to \(v \). So among the \(k \) possible colors, there will be a color not used to color these adjacent nodes, and this color can be assigned to \(v \) to form a \(k \)-coloring of \(G_{n+1} \).

Identify the exact sentence where the proof goes wrong.

Problem 5. [15 points] Prove or disprove the following claim: for some \(n \geq 3 \) \((n \text{ boys and } n \text{ girls, for a total of } 2n \text{ people})\), there exists a set of boys’ and girls’ preferences such that every dating arrangement is stable.

Problem 6. [20 points]

Let \((s_1, s_2, ..., s_n)\) be an arbitrarily distributed sequence of the number 1, 2, ..., \(n-1 \), \(n \). For instance, for \(n = 5 \), one arbitrary sequence could be (5, 3, 4, 2, 1).

Define the graph \(G=(V,E) \) as follows:

1. \(V = \{v_1, v_2, ..., v_n\} \)
2. \(e = (v_i, v_j) \in E \) if either:

 (a) \(j = i + 1 \), for \(1 \leq i \leq n - 1 \)

 (b) \(i = s_k \), and \(j = s_{k+1} \) for \(1 \leq k \leq n - 1 \)

(a) [10 pts] Prove that this graph is 4-colorable for any \((s_1, s_2, ..., s_n)\).

Hint: First show that a line graph is 2-colorable. Note that a line graph is defined as follows: The \(n \)-node graph containing \(n - 1 \) edges in sequence is known as the line graph \(L_n \).

(b) [10 pts] Suppose \((s_1, s_2, ..., s_n) = (1, a_1, 3, a_2, 5, a_3, ...) \) where \(a_1, a_2, ..., \) is an arbitrary distributed sequence of the even numbers in \(1, ..., n-1 \). Prove that the resulting graph is 2-colorable.