Notes for Recitation 1

1 Logic

How can one discuss mathematics with logical precision, when the English language is itself riddled with ambiguities? For example, imagine that you ask a friend what kind of dessert was offered at the party you couldn’t make it to last week, and your friend says,

You could have cake or ice cream.

Does this mean that you could have both cake and ice cream? Or does it mean you had to choose either one or the other?

To cope with such ambiguities, mathematicians have defined precise meanings for some key words and phrases. Furthermore, they have devised symbols to represent those words. For example, if \(P \) is a proposition, then “not \(P \)” is a new proposition that is true whenever \(P \) is false and vice versa. The symbolic representation for “not \(P \)” is \(\neg P \) or \(
\)

Two propositions, \(P \) and \(Q \), can be joined by “and”, “or”, “implies”, or “if and only if” to form a new proposition. The truth of this new proposition is determined by the truth of \(P \) and \(Q \) according to the table below. Symbolic equivalents are given in parentheses.

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>“(P) and (Q)” ((P \land Q))</th>
<th>“(P) or (Q)” ((P \lor Q))</th>
<th>“if (P), then (Q)” ((P \Rightarrow Q))</th>
<th>“(P) iff (Q)” ((P \Leftrightarrow Q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

There are a couple notable features hidden in this table:

- The phrase “\(P \) or \(Q \)” is true if \(P \) is true, \(Q \) is true, or both. Thus, you can have your cake and ice cream too.

- The phrase “\(P \) implies \(Q \)” (equivalently, “if \(P \), then \(Q \)”) is true when \(P \) is false or \(Q \) is true. Thus, “if the moon is made of green cheese, then there will be no final in 6.042” is a true statement.
There are two more important phrases in mathematical writing: “for all” (symbolized by \forall) and “there exists” (symbolized by \exists). These are called quantifiers. A quantifier is always followed by a variable (and perhaps an indication of the range of that variable) and then a predicate, which typically involves that variable. Here are two examples:

$$\forall x \in \mathbb{R}^+ \quad e^x < (1 + x)^{1+x}$$

$$\exists n \in \mathbb{N} \quad 2^n > (100n)^{100}$$

The first statement says that e^x is less than $(1 + x)^{1+x}$ for every positive real number x. The second statement says that there exists a natural number n such that $2^n > (100n)^{100}$.

The special symbols such as \forall, \exists, \neg, and \lor are useful to logicians trying to express mathematical ideas without resorting to English at all. And other mathematicians often use these symbols as a shorthand. We recommend using them sparingly, however, because decrypting statements written in this symbolic language can be challenging!

2 Proving an Implication

Let’s try to prove the following theorem.

Theorem 1. Let $P(a, b)$ be any predicate defined for all $a \in A$ and $b \in B$. Then:

$$(\exists a \in A \quad \forall b \in B \quad P(a, b)) \implies (\forall b \in B \quad \exists a \in A \quad P(a, b))$$

Yuck! Now you know you’re in a math class! Let’s impose a specific interpretation in order to give concrete meaning to this claim. Define:

$$A = \{6.042 \text{ students}\}$$

$$B = \{6.042 \text{ lectures}\}$$

$$P(a, b) = \text{“student } a \text{ falls asleep during lecture } b\text{”}$$

Interpreting the left side in these terms gives:

$$\exists a \in A \quad \forall b \in B \quad P(a, b) = \text{“there exists a student that falls asleep in every lecture”}$$

So this side asserts that some particular student — let’s call him Snoozer — always falls asleep. Now on the right side, we have:

$$\forall b \in B \quad \exists a \in A \quad P(a, b) = \text{“in every lecture, some student falls asleep”}$$

This is a slightly different assertion, because there might be a different sleeper in each lecture. Intuitively, the left side should imply the right; if Snoozer sleeps in every lecture, then in every lecture some student is surely asleep.
The implication in Theorem 1 is actually true for every predicate P and choice of sets A and B. A universally-true statement, like this one, is called a validity. (Every tautology (cf. Lecture Notes 9/4, p.6) is a validity, but validities may also involve quantifiers.) The converse of an implication $P \Rightarrow Q$ is the reverse implication $Q \Rightarrow P$. In this case, the converse is:

\[
(\forall b \in B \, \exists a \in A \, P(a, b)) \Rightarrow (\exists a \in A \, \forall b \in B \, P(a, b))
\]

Under our interpretation, this says, “If in every lecture some student falls asleep, then there is some student who falls asleep in every lecture.” This is not necessarily true, although it might be true for certain choices of predicate and sets. But since the truth of this converse proposition depends on the particular choice of predicate and sets, it is not a validity.

Anyway, let’s prove the theorem.

Proof. We consider two cases.

Case 1: Suppose that the left side of the implication is false. Then the claim as a whole is true by default.

Case 2: Suppose that the left side of the implication is true. Then there exists some element $a_0 \in A$ such that $P(a_0, b)$ is true for all $b \in B$. Thus, for all $b \in B$ there exists an $a \in A$ (namely, a_0) such that $P(a, b)$ is true. Therefore, the right side of the implication is also true.

In both cases, the left side implies the right side, and so the theorem holds.

Broadly speaking, we just proved that $P \Rightarrow Q$ for some nasty-looking propositions P and Q. When P was false (case 1), the implication held trivially. When P was true (case 2), we had to do some work to show that Q was also true. Every implication proof has this same structure: all the substance is in case 2. Thus, ordinarily no one even bothers to write down case 1 or even to identify two cases! Instead, when proving an implication, you may dispense with everything except for the body of case 2; the boxed text alone is considered a valid proof of the theorem. In summary, in order to prove that P implies Q, you should assume that P is true and prove that Q is also true subject to that assumption.
3 Team Problem: A Mystery

A certain cabal within the 6.042 course staff is plotting to make the final exam *ridiculously hard*. (“Problem 1. Prove that the axioms of mathematics are complete and consistent. Express your answer in Mayan hieroglyphics.”) The only way to stop their evil plan is to determine exactly who is in the cabal. The course staff consists of nine people:

{Spyros, Ling, Chieu, Nick, Bill, Jay, Brooke, Marten, Tom}

The cabal is a subset of these nine. A membership roster has been found and appears below, but it is deviously encrypted in logic notation. The predicate \(incabal\) indicates who is in the cabal; that is, \(incabal(x)\) is true if and only if \(x\) is a member. Translate each statement below into English and deduce who is in the cabal.

(i) \(\exists x \exists y \exists z \ (x \neq y \land x \neq z \land y \neq z \land incabal(x) \land incabal(y) \land incabal(z))\)

Solution. A direct English paraphrase would be “There exist people we’ll call \(x, y,\) and \(z,\) who are all different, such that \(x, y\) and \(z\) are each in the cabal.” A better version would use the fact that there’s no need in this case to give names to the people. Namely, a better paraphrase is, “There are 3 different people in the cabal.” Perhaps a simpler way to say this is, “The cabal is of size at least 3.”

(ii) \(\neg (incabal(Ling) \land incabal(Bill))\)

Solution. Ling and Bill are not both in the cabal. Equivalently: at least one of Ling and Bill is not in the cabal.

(iii) \((incabal(Brooke) \lor incabal(Nick)) \rightarrow \forall x \ incabal(x)\)

Solution. If either Brooke or Nick is in the cabal, then everyone is.

(iv) \(incabal(Ling) \rightarrow incabal(Bill)\)

Solution. If Ling is in the cabal, then Bill is also.

(v) \(incabal(Chieu) \rightarrow incabal(Brooke)\)

Solution. If Chieu is in the cabal, then Brooke is also.

(vi) \((incabal(Spyros) \lor incabal(Jay)) \rightarrow \neg incabal(Tom)\)

Solution. If either of Spyros or Jay is in the cabal, then Tom is not. Equivalently, if Tom is in the cabal, then neither Spyros nor Jay is.

(vii) \((incabal(Spyros) \lor incabal(Bill)) \rightarrow \neg incabal(Marten)\)

Solution. If either of Spyros or Bill is in the cabal, then Marten is not. Equivalently, if Marten is in the cabal, then neither Spyros nor Bill is.
So much for the translations. We now argue that the only cabal satisfying all seven propositions above is one whose members are exactly Spyros, Bill, and Jay.

We first observe that by (ii), there must be someone — either Ling or Bill — who is not in the cabal. But if either Brooke or Nick were in the cabal, then by (iii), everyone would be. So we conclude by contradiction that

Brooke and Nick are not in the cabal. \hspace{2cm} (1)

Now consider that (v) implies its contrapositive: if Brooke is not in the cabal, then neither is Chieu. Therefore, since Brooke is not in the cabal,

Chieu is not in the cabal. \hspace{2cm} (2)

Next observe that if Ling were in the cabal, then by (iv), Bill would be too, contradicting (ii). So by again contradiction, we conclude that

Ling is not in the cabal. \hspace{2cm} (3)

Now suppose Tom is in the cabal. Then by (vi), Spyros and Jay are not. We already know Brooke, Nick, Chieu, and Ling are not in the cabal, leaving only three who could be — Tom, Marten, and Bill. But by (i) the cabal must have at least three members, so it follows that the cabal must consist of exactly these three. This proves:

Lemma 2. If Tom is in the cabal, then Marten and Bill are in the cabal.

But by (vii), if Bill is the cabal, then Marten is not. That is,

Lemma 3. Bill and Marten cannot both be in the cabal.

Now from Lemma 3 we conclude that the conclusion of Lemma 2 is false. So by contrapositive, the hypothesis of Lemma 2 must also be false, namely,

Tom is not in the cabal. \hspace{2cm} (4)

Finally, suppose Marten is in the cabal. Then by (vii), Spyros and Bill are not, and we already know Brooke, Nick, Chieu, Ling, and Tom are not. So the cabal must consist of at most two people (Marten and Jay). This contradicts (i), and we conclude by contradiction that

Marten is not in the cabal. \hspace{2cm} (5)

So the only remaining people who could be in the cabal are Spyros, Bill, and Jay. Since the cabal must have at least three members, we conclude that

Lemma 4. The only possible cabal consists of Spyros, Bill, and Jay.
But we’re not done yet: we haven’t shown that a cabal consisting of Spyros, Bill, and Jay actually does satisfy all seven conditions. So let \(A = \{\text{Spyros}, \text{Bill}, \text{Jay}\} \), and let’s quickly check that \(A \) satisfies (i)–(vii):

- \(|A| = 3\), so \(A \) satisfies (i).
- Ling is not in \(A \), so \(A \) satisfies (ii) and (iv).
- Neither Brooke nor Nick is in \(A \), so the hypothesis of (iii) is false, which means that \(A \) satisfies (iii).
- Chieu is not in \(A \), so \(A \) satisfies (v).
- Finally, Tom and Marten are not in \(A \), so the conclusions of both (vi) and (vii) are true, and so \(A \) satisfies (vi) and (vii).

So now we have proved

Proposition. \(\{\text{Spyros}, \text{Bill}, \text{Jay}\} \) is the unique cabal satisfying conditions (i)–(vii).