The man pictured above is Alan Turing, the most important figure in the history of computer science. For decades, his fascinating life story was shrouded by government secrecy, societal taboo, and even his own deceptions.

At 24 Turing wrote a paper entitled *On Computable Numbers, with an Application to the Entscheidungsproblem*. The crux of the paper was an elegant way to model a computer in mathematical terms. This was a breakthrough, because it allowed the tools of mathematics to be brought to bear on questions of computation. For example, with his model in hand, Turing immediately proved that there exist problems that no computer can solve— no matter how ingenious the programmer. Turing’s paper is all the more remarkable because he wrote it in 1936, a full decade before any computer actually existed.

The word “Entscheidungsproblem” in the title refers to one of the 28 mathematical problems posed by David Hilbert in 1900 as challenges to mathematicians of the 20th century. Turing knocked that one off in the same paper. And perhaps you’ve heard of the “Church-Turing thesis”? Same paper. So Turing was obviously a brilliant guy who generated lots of amazing ideas. But this lecture is about one of Turing’s less-amazing ideas. It involved codes. It involved number theory. And it was sort of stupid.

1 Turing’s Code

Let’s look back to the fall of 1937. Nazi Germany was rearming under Adolf Hitler, world-shattering war looked imminent, and— like us— Alan Turing was pondering the usefulness
of number theory. He foresaw that preserving military secrets would be vital in the coming conflict and proposed a way to encrypt communications using number theory. This is an idea that has ricocheted up to our own time. Today, number theory is the basis for numerous public-key cryptosystems, digital signature schemes, cryptographic hash functions, and digital cash systems. Every time you buy a book from Amazon, check your grades on WebSIS, or use a PayPal account, you are relying on number theoretic algorithms.

Soon after devising his code, Turing disappeared from public view, and half a century would pass before the world learned the full story of where he’d gone and what he did there. We’ll come back to Turing’s life in a little while; for now, let’s investigate the code Turing left behind. The details are uncertain, since he never formally published the idea, so we’ll consider a couple possibilities.

1.1 Turing’s Code (Version 1.0)

The first challenge is to translate a text message into an integer so we can perform mathematical operations on it. This step is not intended to make a message harder to read, so the details are not too important. Here is one approach: replace each letter of the message with two digits (A = 01, B = 02, C = 03, etc.) and string all the digits together to form one huge number. For example, the message “victory” could be translated this way:

"victory" → 22 09 03 20 15 18 25

Turing’s code requires the message to be a prime number, so we may need to pad the result with a few more digits to make a prime. In this case, appending the digits 13 gives the number 2209032015182513, which is prime.

Now here is how the encryption process works. In the description below, \(m \) is the un-encoded message (which we want to keep secret), \(m^* \) is the encrypted message (which the Nazis may intercept), and \(k \) is the key.

Beforehand The sender and receiver agree on a secret key, which is a large prime \(k \).

Encryption The sender encrypts the message \(m \) by computing:

\[m^* = m \cdot k \]

Decryption The receiver decrypts \(m^* \) by computing:

\[\frac{m^*}{k} = \frac{m \cdot k}{k} = m \]
For example, suppose that the secret key is the prime number $k = 22801763489$ and the message m is “victory”. Then the encrypted message is:

$$m^* = m \cdot k$$

$$= 2209032015182513 \cdot 22801763489$$

$$= 50369825549820718594667857$$

There are a couple of questions that one might naturally ask about Turing’s code.

1. Is Turing’s code feasible?
2. Is Turing’s code secure?

Let’s answer them both at the same time, since they are related: On one hand, the sender and receiver should be able to perform their operations (multiplication and primality testing) efficiently. On the other hand, we want to make sure that an eavesdropper that does not know the secret key cannot efficiently factor m!

Well, what do we mean by efficient? We could factor or determine that a number N is prime by trying to divide N by all possible integers less than N. This yields an algorithm that uses something like N operations. These days (in the year 2006) it is typical that N is a 1024 bit number, so we would need 2^{1024} operations. “No problem!” you might say – “we know there must be a factor that is less than \sqrt{N} so just try all possible factors in $1, \ldots, \lceil \sqrt{N} \rceil$". Unfortunately, this plan only gets us down to 2^{512} operations. This is not totally impossible these days, but it could take a really long time – on the order of several months of work by many computers working together.

Thus, we need our algorithms to be efficient in terms of the length, as opposed to the magnitude of the integers m and k. For example, we can multiply two numbers in the range $1, \ldots, N$ using time that is grows something like $(\log N)^2$. So, if N is 1024 binary digits, we can multiply in a bit more than 1 million operations. Not fun, but totally doable, especially if you actually care about reading that message.

In addition to multiplying, the sender and receiver both need to verify that k is indeed a prime. The general problem of determining whether a large number is prime or composite has been studied for centuries, and reasonably good primality tests were known even in Turing’s time. In 2002, Manindra Agrawal, Neeraj Kayal, and Nitin Saxena gave a primality test that is guaranteed to work on a number N in about $(\log N)^{12}$ steps. This definitively placed primality testing in the class of “easy” computational problems at last. Amazingly, the description of their breakthrough algorithm was only thirteen lines long!

The Nazis see only the encrypted message $m^* = m \cdot k$, so recovering the original message m requires factoring m^*. Despite immense efforts, no really efficient factoring algorithm has ever been found. It appears to be a fundamentally difficult problem, though a breakthrough someday is not impossible. Right now, if you need to factor a b bit number in order to read
the message, the best you can do is to use the number field sieve algorithm, which performs
\[e\left(\frac{1}{3}b^{1/2}\right)^{1/3} \] operations. Better get a comfortable chair.

In effect, Turing’s code puts to practical use his discovery that there are limits to the power of computation. Thus, provided \(m \) and \(k \) are sufficiently large, the Nazis seem to be out of luck!

This all sounds promising, but there is a major flaw in Turing’s code.

1.2 Breaking Turing’s Code

Let’s consider what happens when the sender transmits a *second* message using Turing’s code and the same key. This gives the Nazis two encrypted messages to look at:

\[m_1^* = m_1 \cdot k \quad \text{and} \quad m_2^* = m_2 \cdot k \]

The greatest common divisor of the two encrypted messages, \(m_1^* \) and \(m_2^* \), is the secret key \(k \). And, as we’ve seen, the gcd of two numbers can be computed very efficiently. So after the second message is sent, the Nazis can read recover the secret key and read *every* message!

It is difficult to believe a mathematician as brilliant as Turing could overlook such a glaring problem. One possible explanation is that he had a slightly different system in mind, one based on modular arithmetic.

2 Modular Arithmetic

On page 1 of his masterpiece on number theory, *Disquisitiones Arithmeticae*, Gauss introduced the notion of “congruence”. Now, Gauss is another guy who managed to cough up a half-decent idea every now and then, so let’s take a look at this one. Gauss said that \(a \) is *congruent to* \(b \) *modulo* \(n \) if \(n \mid (a − b) \). This is denoted \(a \equiv b \pmod{n} \). For example:

\[29 \equiv 15 \pmod{7} \quad \text{because} \ 7 \mid (29 − 15). \]

Intuitively, the \(\equiv \) symbol is sort of like an = sign, and the mod 7 describes the specific sense in which 29 is equal-ish to 15. Thus, even though \((a − b) \) appears over on the right side, it is in no sense more strongly associated with the 15 than the 29; in fact, it actually defines the meaning of the \(\equiv \) sign.

Here’s another way to think about congruences: *congruence modulo* \(n \) *defines a partition of the integers into* \(n \) *sets so that congruent numbers are all in the same set.* For example, suppose that we’re working modulo 3. Then we can partition the integers into 3 sets as follows:

\[
\begin{align*}
\{ & \ldots, -6, -3, 0, 3, 6, 9, \ldots \} \\
\{ & \ldots, -5, -2, 1, 4, 7, 10, \ldots \} \\
\{ & \ldots, -4, -1, 2, 5, 8, 11, \ldots \}
\end{align*}
\]
Now integers in the same set are all congruent modulo 3. For example, 6 and -3 are both in the first set, and they're congruent because their difference, $6 - (-3) = 9$, is a multiple of 3. Similarly, 11 and 5 are both in the last set, because $11 - 5 = 6$ is a multiple of 3. On the other hand, numbers in different sets are not congruent. For example, 9 is in the first set and 11 in the last set, and they're not congruent because $11 - 9 = 2$ is not a multiple of 3. The upshot is that when arithmetic is done modulo n there are only n really different kinds of number to worry about. In this sense, modular arithmetic is a simplification of ordinary arithmetic and thus is a good reasoning tool.

There are many useful facts about congruences, some of which are listed in the lemma below. The overall theme is that congruences work a lot like equations, though there are a couple exceptions.

Lemma 1 (Facts About Congruences). The following hold for $n \geq 1$:

1. $a \equiv a \pmod{n}$
2. $a \equiv b \pmod{n}$ implies $b \equiv a \pmod{n}$
3. $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ implies $a \equiv c \pmod{n}$
4. $a \equiv b \pmod{n}$ implies $a + c \equiv b + c \pmod{n}$
5. $a \equiv b \pmod{n}$ implies $ac \equiv bc \pmod{n}$
6. $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ imply $a + c \equiv b + d \pmod{n}$
7. $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ imply $ac \equiv bd \pmod{n}$

Proof. We prove only parts 1 and 7; the other parts are proved similarly.

(part 1) Every integer divides 0, so $n \mid (a - a)$, which means $a \equiv a \pmod{n}$.

(part 7) The assumption $a \equiv b \pmod{n}$ implies that $ac \equiv bc \pmod{n}$ by part 5. Similarly, the assumption $c \equiv d \pmod{n}$ implies $bc \equiv bd \pmod{n}$. Therefore, $ac \equiv bd \pmod{n}$ by part 3. \qed

There is a close connection between modular arithmetic and the remainder operation, which we looked at last time. To clarify this link, let’s reconsider the partition of the integers defined by congruence modulo 3:

\[
\begin{align*}
\{ & \ldots, -6, -3, 0, 3, 6, 9, \ldots \} \\
\{ & \ldots, -5, -2, 1, 4, 7, 10, \ldots \} \\
\{ & \ldots, -4, -1, 2, 5, 8, 11, \ldots \}
\end{align*}
\]

Notice that two numbers are in the same set if and only if they leave the same remainder when divided by 3. The numbers in the first set all leave a remainder of 0 when divided by 3, the numbers in the second set leave a remainder of 1, and the numbers in the third leave a remainder of 2. Furthermore, notice that each number is in the same set as its own remainder. For example, 11 and \(\text{rem}(11, 3) = 2\) are both in the same set. Let’s bundle all this happy goodness into a lemma.
Lemma 2 (Congruences and Remainders). The following assertions hold:

1. \(a \equiv (\text{rem}(a, n)) \pmod{n} \)
2. \(a \equiv b \pmod{n} \) if and only if \((\text{rem}(a, n)) = (\text{rem}(b, n)) \)

Proof. (of part 2) By the division algorithm, there exist unique pairs of integers \(q_1, r_1 \) and \(q_2, r_2 \) such that:

\[
\begin{align*}
a &= q_1n + r_1 \quad \text{(where } 0 \leq r_1 < n) \\
b &= q_2n + r_2 \quad \text{(where } 0 \leq r_2 < n)
\end{align*}
\]

In these terms, \((\text{rem}(a, n)) = r_1 \) and \((\text{rem}(b, n)) = r_2 \). Subtracting the second equation from the first gives:

\[
a - b = (q_1 - q_2)n + (r_1 - r_2) \quad \text{(where } -n < r_1 - r_2 < n)
\]

Now \(a \equiv b \pmod{n} \) if and only if \(n \) divides the left side. This is true if and only if \(n \) divides the right side, which holds if and only if \(r_1 - r_2 \) is a multiple of \(n \). Given the bounds on \(r_1 = r_2 \), this happens precisely when \(r_1 = r_2 \), which is equivalent to \(\text{rem}(a, n) = \text{rem}(b, n) \).

\[
\square
\]

3 Turing’s Code (Version 2.0)

In 1940 France had fallen before Hitler’s army, and Britain alone stood against the Nazis in western Europe. British resistance depended on a steady flow of supplies brought across the north Atlantic from the United States by convoys of ships. These convoys were engaged in a cat-and-mouse game with German “U-boat” submarines, which prowled the Atlantic, trying to sink supply ships and starve Britain into submission. The outcome of this struggle pivoted on a balance of information: could the Germans locate convoys better than the Allies could locate U-boats or vice versa?

Germany lost.

But a critical reason behind Germany’s loss was made public only in 1974: the British had broken Germany’s naval code, Enigma. Through much of the war, the Allies were able to route convoys around German submarines by listening into German communications. The British government didn’t explain how Enigma was broken until 1996. When the analysis was finally released (by the US), the author was none other than Alan Turing. In 1939 he had joined the secret British codebreaking effort at Bletchley Park. There, he played a central role in cracking the German’s Enigma code and thus in preventing Britain from falling into Hitler’s hands.

Governments are always tight-lipped about cryptography, but the half-century of official silence about Turing’s role in breaking Enigma and saving Britain may be related to some disturbing events after the war.
Let’s consider an alternative interpretation of Turing’s code. Perhaps we had the basic idea right (multiply the message by the key), but erred in using *conventional* arithmetic instead of *modular* arithmetic. Maybe this is what Turing meant:

Beforehand The sender and receiver agree on a large prime \(p \), which may be made public. (This will be the modulus for all our arithmetic.) They also agree on a secret key \(k \in \{1, 2, \ldots, p - 1\} \).

Encryption The message \(m \) can be any integer in the set \(\{0, 1, 2, \ldots, p - 1\} \); in particular, the message is no longer required to be a prime. The sender encrypts the message \(m \) to produce \(m^* \) by computing:

\[
m^* = \text{rem}(mk, p)
\]

\((*)\)

Decryption (Uh-oh.)

The decryption step is a problem. We might hope to decrypt in the same way as before: by dividing the encrypted message \(m^* \) by the key \(k \). The difficulty is that \(m^* \) is the *remainder* when \(mk \) is divided by \(p \). So dividing \(m^* \) by \(k \) might not even give us an integer!

This decoding difficulty can be overcome with a better understanding of arithmetic modulo a prime.

3.1 Multiplicative Inverses

The *multiplicative inverse* of a number \(x \) is another number \(x^{-1} \) such that:

\[
x \cdot x^{-1} = 1
\]

Generally, multiplicative inverses exist over the real numbers. For example, the multiplicative inverse of 3 is \(\frac{1}{3} \) since:

\[
3 \cdot \frac{1}{3} = 1
\]

The sole exception is that 0 does not have an inverse.

On the other hand, inverses generally do not exist over the integers. For example, 7 cannot be multiplied by another integer to give 1.

Surprisingly, multiplicative inverses do exist when we’re working *modulo a prime number*. For example, if we’re working modulo 5, then 3 is a multiplicative inverse of 7, since:

\[
7 \cdot 3 \equiv 1 \pmod{5}
\]

(All numbers congruent to 3 modulo 5 are also multiplicative inverses of 7; for example, \(7 \cdot 8 \equiv 1 \pmod{5} \) as well.) The only exception is that numbers congruent to 0 modulo 5 (that is, the multiples of 5) do not have inverses, much as 0 does not have an inverse over the real numbers. Let’s prove this.
Lemma 3. If p is prime and k is not a multiple of p, then k has a multiplicative inverse modulo p.

Proof. Since p is prime, it has only two divisors: 1 and p. And since k is not a multiple of p, we must have $\gcd(p, k) = 1$. Therefore, there is a linear combination of p and k equal to 1:

$$sp + tk = 1$$

Rearranging terms gives:

$$sp = 1 - tk$$

This implies that $p | 1 - tk$ by the definition of divisibility, and therefore $tk \equiv 1 \pmod{p}$ by the definition of congruence. Thus, t is a multiplicative inverse of k. \hfill \Box

Multiplicative inverses are the key to decryption in Turing’s code. Specifically, we can recover the original message by multiplying the encoded message by the inverse of the key:

$$m^* \cdot k^{-1} \equiv \text{rem} (mk, p) \cdot k^{-1} \pmod{p}$$
$$\equiv mkk^{-1} \pmod{p}$$
$$\equiv m \pmod{p}$$

This shows that m^*k^{-1} is congruent to the original message m. Since the m was in the range $0, 1, \ldots, p - 1$, we can recover it exactly taking a remainder:

$$m = \text{rem} (m^*k^{-1}, p)$$

So now we can decrypt!

3.2 Cancellation

Another sense in which real number are nice is that one can cancel multiplicative terms. In other words, if we know that $m_1k = m_2k$, then can cancel the k’s and conclude that $m_1 = m_2$, provided $k \neq 0$. In general, cancellation is not valid in modular arithmetic. For example, this congruence is correct:

$$2 \cdot 3 \equiv 4 \cdot 3 \pmod{6}$$

But if we cancel the 3’s, we reach a false conclusion:

$$2 \equiv 4 \pmod{6}$$

The fact that multiplicative terms can not be cancelled is the most significant sense in which congruences differ from ordinary equations. However, this difference goes away if we’re working modulo a prime; then cancellation is valid.
Lemma 4. Suppose p is a prime and k is not a multiple of p. Then
\[ak \equiv bk \pmod{p} \implies a \equiv b \pmod{p} \]

Proof. Multiply both sides of the congruence by k^{-1}.

We can use this lemma to get a bit more insight into how Turing’s code works. In particular, the encryption operation in Turing’s code permutes the space of messages. This is stated more precisely in the following corollary.

Corollary 5. Suppose p is a prime and k is not a multiple of p. Then the sequence:
\[\text{rem} \left((0 \cdot k), p \right), \text{rem} \left((1 \cdot k), p \right), \text{rem} \left((2 \cdot k), p \right), \ldots, \text{rem} \left(((p - 1) \cdot k), p \right) \]
is a permutation of the sequence:
\[0, 1, 2, \ldots, (p - 1) \]
This remains true if the first term is deleted from each sequence.

Proof. The first sequence contains p numbers, which are all in the range 0 to $p - 1$ by the definition of remainder. Furthermore, the numbers in the first sequence are all different; by part 2 of Lemma 2, $\text{rem} \left(m_1 k, p \right) = \text{rem} \left(m_2 k, p \right)$ if and only if $m_1 \equiv m_2 \pmod{p}$, and no two numbers in the range 0, 1, \ldots, $p - 1$ are congruent modulo p. Thus, the first sequence must contain all of the numbers from 0 to $p - 1$ in some order. The claim remains true if the first terms are deleted, because both sequences begin with 0.

For example, suppose $p = 5$ and $k = 3$. Then the sequence:
\[\text{rem} \left((0 \cdot 3), 5 \right), \text{rem} \left((1 \cdot 3), 5 \right), \text{rem} \left((2 \cdot 3), 5 \right), \text{rem} \left((3 \cdot 3), 5 \right), \text{rem} \left((4 \cdot 3), 5 \right) \]
is a permutation of 0, 1, 2, 3, 4 and the last four terms are a permutation of 1, 2, 3, 4. As long as the Nazis don’t know the secret key k, they don’t know how the message space is permuted by the process of encryption and thus can’t read encoded messages.

3.3 Fermat’s Theorem

A remaining challenge in using Turing’s code is that decryption requires the inverse of the secret key k. But how can we find an inverse of k? One approach is to rely on Fermat’s Theorem, which is much easier than his famous Last Theorem— and more useful.

Theorem 6 (Fermat’s Theorem). Suppose p is a prime and k is not a multiple of p. Then:
\[k^{p-1} \equiv 1 \pmod{p} \]
Proof. We reason as follows:

\[
1 \cdot 2 \cdot 3 \cdots (p - 1) \equiv \text{rem} (k, p) \cdot \text{rem} (2k, p) \cdot \text{rem} (3k, p) \cdots \text{rem} ((p - 1)k, p) \pmod{p}
\]

\[
\equiv k \cdot 2k \cdot 3k \cdots (p - 1)k \pmod{p}
\]

\[
\equiv (p - 1)! \cdot k^{p-1} \pmod{p}
\]

The expressions on the first line are actually equal, by Corollary 5, so they are certainly congruent modulo \(p\). The second step uses part 1 of Lemma 2. In the third step, we rearrange terms in the product.

Now \((p - 1)!\) can not be a multiple of \(p\), because the prime factorizations of 1, 2, \ldots, \((p - 1)\) contain only primes smaller than \(p\). Therefore, we can cancel \((p - 1)!\) from the first expression and the last by Lemma 4, which proves the claim.

Here is how we can find inverses using Fermat’s Theorem. Suppose \(p\) is a prime and \(k\) is not a multiple of \(p\). Then, by Fermat’s Theorem, we know that:

\[
k^{p-2} \cdot k \equiv 1 \pmod{p}
\]

Therefore, \(k^{p-2}\) must be a multiplicative inverse of \(k\). For example, suppose that we want the multiplicative inverse of 6 modulo 17. Then we need to compute \(\text{rem} (6^{15}, 17)\), which we can do by successive squaring. All the congruences below hold modulo 17.

\[
6^2 \equiv 36 \equiv 2
\]

\[
6^4 \equiv (6^2)^2 \equiv 2^2 \equiv 4
\]

\[
6^8 \equiv (6^4)^2 \equiv 4^2 \equiv 16
\]

\[
6^{15} \equiv 6^8 \cdot 6^4 \cdot 6^2 \cdot 6 \equiv 16 \cdot 4 \cdot 2 \cdot 6 \equiv 3
\]

Therefore, \(\text{rem} (6^{15}, 17) = 3\). Sure enough, 3 is the multiplicative inverse of 6 modulo 17, since:

\[
3 \cdot 6 \equiv 1 \pmod{17}
\]

In general, if we were working modulo a prime \(p\), finding a multiplicative inverse by trying every value between 1 and \(p - 1\) would require about \(p\) operations. However, the approach above requires only about \(\log p\) operations, which is far better when \(p\) is large.

3.4 Breaking Turing’s Code—Again

German weather reports were not encrypted with the highly-secure Enigma system. After all, so what if the Allies learned that there was rain off the south coast of Iceland? But, amazingly, this practice provided the British with a critical edge in the Atlantic naval battle during 1941.
The problem was that some of those weather reports had originally been transmitted from U-boats out in the Atlantic. Thus, the British obtained both unencrypted reports and the same reports encrypted with Enigma. By comparing the two, the British were able to determine which key the Germans were using that day and could read all other Enigma-encoded traffic. Today, this would be called a known-plaintext attack.

Let’s see how a known-plaintext attack would work against Turing’s code. Suppose that the Nazis know both m and m^* where:

$$m^* \equiv mk \pmod{p}$$

Now they can compute:

$$m^{p-2} \cdot m^* \equiv m^{p-2} \cdot \text{rem}(mk, p) \pmod{p} \quad \text{(def. of m^*)}$$

$$\equiv m^{p-2} \cdot mk \pmod{p} \quad \text{(part 2 of Lemma 2)}$$

$$\equiv m^{p-1} \cdot k \pmod{p} \quad \text{(simplification)}$$

$$\equiv k \pmod{p} \quad \text{(Fermat’s Theorem)}$$

Now the Nazis have the secret key k and can decrypt any message!

This is a huge vulnerability, so Turing’s code has no practical value. Fortunately, Turing got better at cryptography after devising this code; his subsequent cracking of Enigma surely saved thousands of lives, if not the whole of Britain.

4 Postscript

A few years after the war, Turing’s home was robbed. Detectives soon determined that a former homosexual lover of Turing’s had conspired in the robbery. So they arrested him; that is, they arrested Alan Turing. Because, at that time, homosexuality was a crime in Britain, punishable by up to two years in prison. Turing was sentenced to a humiliating hormonal “treatment” for his homosexuality: he was given estrogen injections. He began to develop breasts.

Three years later, Alan Turing, the founder of computer science, was dead. His mother explained what happened in a biography of her own son. Despite her repeated warnings, Turing carried out chemistry experiments in his own home. Apparently, her worst fear was realized: by working with potassium cyanide while eating an apple, he poisoned himself.

However, Turing remained a puzzle to the very end. His mother was a devoutly religious woman who considered suicide a sin. And, other biographers have pointed out, Turing had previously discussed committing suicide by eating a poisoned apple. Evidently, Alan Turing, who founded computer science and saved his country, took his own life in the end, and in just such a way that his mother could believe it was an accident.

5 Arithmetic with an Arbitrary Modulus

Turing’s code did not work as he hoped. However, his essential idea—using number theory as the basis for cryptography—succeeded spectacularly in the decades after his death.

In 1977, Ronald Rivest, Adi Shamir, and Leonard Adleman at MIT proposed a highly secure cryptosystem (called RSA) based on number theory. Despite decades of attack, no significant weakness has been found. Moreover, RSA has a major advantage over traditional codes: the sender and receiver of an encrypted message need not meet beforehand to agree on a secret key. Rather, the receiver has both a secret key, which she guards closely, and a public key, which she distributes as widely as possible. To send her a message, one encrypts using her widely-distributed public key. Then she decrypts the message using her closely-held private key. The use of such a public key cryptography system allows you and Amazon, for example, to engage in a secure transaction without meeting up beforehand in a dark alley to exchange a key.

Interestingly, RSA does not operate modulo a prime, as Turing’s scheme may have, but rather modulo the product of two large primes. Thus, we’ll need to know a bit about how arithmetic works modulo a composite number in order to understand RSA. Arithmetic modulo an arbitrary positive integer is really only a little more painful than working modulo a prime, in the same sense that a doctor says “This is only going to hurt a little” before he jams a big needle in your arm.

5.1 Relative Primality and Phi

First, we need a new definition. Integers a and b are relatively prime iff $\gcd(a, b) = 1$. For example, 8 and 15 are relatively prime, since $\gcd(8, 15) = 1$. Note that every integer is relatively prime to a genuine prime number p, except for multiples of p.

We’ll also need a certain function that is defined using relative primality. Let n be a positive integer. Then $\phi(n)$ denotes the number of integers in $\{1, 2, \ldots, n-1\}$ that are relatively prime to n. For example, $\phi(7) = 6$, since 1, 2, 3, 4, 5, and 6 are all relatively prime to 7. Similarly, $\phi(12) = 4$, since only 1, 5, 7, and 11 are relatively prime to 12. If you know the prime factorization of n, then computing $\phi(n)$ is a piece of cake, thanks to the following theorem.

Theorem 7. The function ϕ obeys the following relationships:

(a) If a and b are relatively prime, then $\phi(ab) = \phi(a)\phi(b)$.

(b) If p is a prime, then $\phi(p^k) = p^k - p^{k-1}$ for $k \geq 1$.

A proof of Theorem 7(a) will appear in a Problem Set. A proof of part (b) follows from the observation that the number of integers in $\{1, 2, \ldots, p^k - 1\}$ that are not relatively prime
to \(p^k \) is equal to \(p^{k-1} - 1 \), the number of integers in \(\{1, 2, \ldots, p^k - 1\} \) that are divisible by \(p \). Here’s an example of using Theorem 7 to compute \(\phi(300) \):

\[
\phi(300) = \phi(2^2 \cdot 3 \cdot 5^2) \\
= \phi(2^2) \cdot \phi(3) \cdot \phi(5^2) \\
= (2^2 - 2^1)(3^1 - 3^0)(5^2 - 5^1) \\
= 80.
\]

5.2 Generalizing to an Arbitrary Modulus

Let’s generalize what we know about arithmetic modulo a prime. Now, instead of working modulo a prime \(p \), we’ll work modulo an arbitrary positive integer \(n \). The basic theme is that arithmetic modulo \(n \) may be complicated, but the integers relatively prime to \(n \) remain fairly well-behaved. For example, the proof of Lemma 3 of an inverse for \(k \) modulo \(p \) extends to an inverse for \(k \) relatively prime to \(n \):

Lemma 8. Let \(n \) be a positive integer. If \(k \) is relatively prime to \(n \), then there exists an integer \(k^{-1} \) such that:

\[k \cdot k^{-1} \equiv 1 \pmod{n} \]

As a consequence of this lemma, we can cancel a multiplicative term from both sides of a congruence if that term is relatively prime to the modulus:

Corollary 9. Suppose \(n \) is a positive integer and \(k \) is relatively prime to \(n \). If

\[ak \equiv bk \pmod{n} \]

then

\[a \equiv b \pmod{n} \]

This holds because we can multiply both sides of the first congruence by \(k^{-1} \) and simplify to obtain the second.

5.3 Euler’s Theorem

RSA essentially relies on Euler’s Theorem, a generalization of Fermat’s Theorem to an arbitrary modulus. The proof is much like the proof of Fermat’s Theorem, except that we focus on integers relatively prime to the modulus. Let’s start with a lemma.

Lemma 10. Suppose \(n \) is a positive integer and \(k \) is relatively prime to \(n \). Let \(k_1, \ldots, k_r \) denote all the integers relatively prime to \(n \) in the range \(0 \leq k_i < n \). Then the sequence:

\[\text{rem}(k_1 \cdot k, n), \text{rem}(k_2 \cdot k, n), \text{rem}(k_3 \cdot k, n), \ldots, \text{rem}(k_r \cdot k, n) \]

is a permutation of the sequence:

\[k_1, k_2, \ldots, k_r. \]
Proof. We will show that the numbers in the first sequence are all distinct and all appear in the second sequence. Since the two sequences have the same length, the first must be a permutation of the second.

First, we show that the numbers in the first sequence are all distinct. Suppose that \(\text{rem} \left(k_i k, n \right) = \text{rem} \left(k_j k, n \right) \). This is equivalent to \(k_i k \equiv k_j k \pmod{n} \), which implies \(k_i \equiv k_j \pmod{n} \) by Corollary 9. This, in turn, means that \(k_i = k_j \) since both are between 1 and \(n - 1 \). Thus, a term in the first sequence is not equal to any other term.

Next, we show that each number in the first sequence appears in the second. By assumption, \(\gcd(k_i, n) = 1 \) and \(\gcd(k, n) = 1 \), which means that \(\gcd(n, \text{rem} \left(k_i k, n \right)) = \gcd(k_i k, n) \) (by Lemma 8.5 in Lecture Notes 4) \(= 1 \) (by Lemma 8.3 in Lecture Notes 4).

So \(\text{rem} \left(k_i k, n \right) \) is relatively prime to \(n \) and is in the range from 0 to \(n - 1 \) by the definition of remainder. The second sequence is defined to consist of all such integers. \(\square \)

We can now prove Euler’s Theorem:

Theorem 11 (Euler’s Theorem). Suppose \(n \) is a positive integer and \(k \) is relatively prime to \(n \). Then

\[
 k^{\phi(n)} \equiv 1 \pmod{n}
\]

Proof. Let \(k_1, \ldots, k_r \) denote all integers relatively prime to \(n \) such that \(0 \leq k_i < n \). Then \(r = \phi(n) \), by the definition of the function \(\phi \). Now we can reason as follows:

\[
\begin{align*}
 k_1 \cdot k_2 \cdots k_r \\
= & \text{rem} \left(k_1 \cdot k, n \right) \cdot \text{rem} \left(k_2 \cdot k, n \right) \cdots \text{rem} \left(k_r \cdot k, n \right) \\
\equiv & \left(k_1 \cdot k \right) \cdot \left(k_2 \cdot k \right) \cdots \left(k_r \cdot k \right) \pmod{n} \\
\equiv & \left(k_1 \cdot k_2 \cdots k_r \right) \cdot k^r \pmod{n} \\
\end{align*}
\]

Lemma 8.3 in Lecture Notes 4 implies that \(k_1 \cdot k_2 \cdots k_r \) is prime relative to \(n \). Therefore, we can cancel this product from the first expression and the last by Corollary 9. This proves the claim. \(\square \)

We can find multiplicative inverses using Euler’s theorem as we did with Fermat’s theorem: if \(k \) is relatively prime to \(n \), then \(k^{\phi(n) - 1} \) is a multiplicative inverse of \(k \) modulo \(n \). However, this approach requires computing \(\phi(n) \). Our best method for doing so requires factoring \(n \), which can be quite difficult in general. Fortunately, when we know how to factor \(n \), we can use Theorem 7 to compute \(\phi(n) \) efficiently!
5.4 RSA

Finally, we are ready to see how the RSA public key encryption scheme works:

RSA Public Key Encryption

Beforehand The receiver creates a public key and a secret key as follows.

1. Generate two distinct primes, \(p \) and \(q \).
2. Let \(n = pq \).
3. Select an integer \(e \) such that \(\gcd(e, (p-1)(q-1)) = 1 \).
 The *public key* is the pair \((e, n)\). This should be distributed widely.
4. Compute \(d \) such that \(de \equiv 1 \pmod{(p-1)(q-1)} \).
 The *secret key* is the pair \((d, n)\). This should be kept hidden!

Encoding The sender encrypts message \(m \) in \(\{1, \ldots, n-1\} \) to produce \(m' \) using the public key:

\[
m' = \text{rem}(m^e, n).
\]

Decoding The receiver decrypts message \(m' \) back to message \(m \) using the secret key:

\[
m = \text{rem}((m')^d, n).
\]

Why does decoding work? We need to show that the decryption \(\text{rem}((m')^d, n) \) is indeed equal to the sender’s message \(m \). Since the sender encrypts the message \(m \) to \(m' = \text{rem}(m^e, n) \), \(m' \) is congruent to \(m^e \) modulo \(n \) by Lemma 2.1. That is,

\[
m' \equiv m^e \pmod{n}.
\]

By raising both sides to the power \(d \), we obtain the congruence

\[
(m')^d \equiv m^{ed} \pmod{n}. \quad (1)
\]

The encryption exponent \(e \) and the decryption exponent \(d \) are chosen such that \(de \equiv 1 \pmod{(p-1)(q-1)} \). So, there exists an integer \(r \) such that \(ed = 1 + r(p-1)(q-1) \). By substituting \(1 + r(p-1)(q-1) \) for \(ed \) in (1), we obtain

\[
(m')^d \equiv m \cdot m^{r(p-1)(q-1)} \pmod{n}. \quad (2)
\]

If we can show that

\[
m \cdot m^{r(p-1)(q-1)} \equiv m \pmod{n}, \quad (3)
\]
then the combination of (2) and (3) proves that \((m')^d\) is congruent to \(m\) modulo \(n\), which implies what we need to show; \(m = \text{rem} ((m')^d, n)\).

So, in order to complete the proof, we need to show (3). Let us first look at this congruence modulo \(p\). We use case analysis in order to prove that

\[
m \cdot m^{r(p-1)(q-1)} \equiv m \pmod{p}.
\]

(4)

We first assume \(\text{rem} (m, p) \neq 0\). By Lemma 2.1,

\[
m \equiv \text{rem} (m, p) \pmod{p}.
\]

Raising both sides to the power \(p - 1\) yields

\[
m^{p-1} \equiv \text{rem} (m, p)^{p-1} \pmod{p}.
\]

If \(\text{rem} (m, p) \neq 0\), then it is a positive integer less than or equal to \(p - 1\) and, therefore, it is relatively prime to prime \(p\). This means we can apply Fermat’s theorem and conclude that

\[
m^{p-1} \equiv \text{rem} (m, p)^{p-1} \equiv 1 \pmod{p}.
\]

This proves (4).

The second case assumes \(\text{rem}(m, p) = 0\). In other words \(p\) divides \(m\), that is, \(m\) is congruent to 0 modulo \(p\). This proves (4):

\[
m \cdot m^{r(p-1)(q-1)} \equiv 0 \equiv m \pmod{p}.
\]

A similar argument proves

\[
m \cdot m^{r(p-1)(q-1)} \equiv m \pmod{q}.
\]

So, both \(p\) and \(q\) divide the difference between \(m\) and \(m^{r(p-1)(q-1)}\). Since \(p\) and \(q\) are distinct primes, this implies (3); the product \(n = pq\) divides the difference between \(m\) and \(m^{r(p-1)(q-1)}\). This completes the proof.