Random Walks

1 A Bug’s Life

There is a small flea named Stencil. To his right, there is an endless flat plateau. One inch to his left is the Cliff of Doom, which drops to a raging sea filled with flea-eating monsters.

Each second, Stencil hops 1 inch to the right or 1 inch to the left with equal probability, independent of the direction of all previous hops. If he ever lands on the very edge of the cliff, then he teeters over and falls into the sea.

So, for example, if Stencil’s first hop is to the left, he’s fishbait. On the other hand, if his first few hops are to the right, then he may bounce around happily on the plateau for quite some time.

Our job is to analyze the life of Stencil. Does he have any chance of avoiding a fatal plunge? If not, how long will he hop around before he takes the plunge?

Stencil’s movement is an example of a random walk. A typical random walk involves some value that randomly wavers up and down over time. Many natural phenomena are
nicely modeled by random walks. However, for some reason, they are traditionally discussed in the context of some social vice. For example, the value is often regarded as the position of a drunkard who randomly staggers left, staggers right, or just wobbles in place during each time step. Or the value is the wealth of a gambler who is continually winning and losing bets. So discussing random walks in terms of fleas is actually sort of elevating the discourse.

1.1 A Simpler Problem

Let’s begin with a simpler problem. Suppose that Stencil is on a small island; now, not only is the Cliff of Doom 1 inch to his left, but also there is a Cliff of Disaster 2 inches to his right!

Below the figure, we’ve worked out a tree diagram for his possible fates. In particular, he falls off the Cliff of Doom on the left side with probability:

$$\frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \ldots = \frac{1}{2} \left(1 + \frac{1}{4} + \frac{1}{16} + \ldots \right)$$

$$= \frac{1}{2} \cdot \frac{1}{1 - \frac{1}{4}}$$

$$= \frac{2}{3}$$

Similarly, he falls off the Cliff of Disaster on the right side with probability:

$$\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \ldots = \frac{1}{3}$$

There is a remaining possibility: he could hop back and forth in the middle of the table forever. However, we’ve already identified two disjoint events with probabilities 2/3 and 1/3, so this happy alternative must have probability 0.
1.2 A Big Island

Putting Stencil on such a tiny island was sort of cruel. Sure, he’s probably carrying bubonic plague, but there’s no reason to pick on the little fella. So suppose that we instead place him \(n \) inches from the left side of an island \(w \) inches across:

In other words, Stencil starts at position \(n \) and there are cliffs at positions 0 and \(w \).

Now he has three possible fates: he could fall off the Cliff of Doom, fall off the Cliff of Disaster, or hop around on the island forever. We could compute the probabilities of these three events with a horrific summation, but fortunately there’s a far easier method: we can use a linear recurrence.

Let \(R_n \) be the probability that Stencil falls to the right off the Cliff of Disaster, given that he starts at position \(n \). In a couple special cases, the value of \(R_n \) is easy to determine. If he starts at position \(w \), he falls from the Cliff of Disaster immediately, so \(R_w = 1 \). On the other hand, if he starts at position 0, then he falls from the Cliff of Doom immediately, so \(R_0 = 0 \).

Now suppose that our frolicking friend starts somewhere in the middle of the island; that is, \(0 < n < w \). Then we can break the analysis of his fate into two cases based on the direction of his first hop:

- If his first hop is to the left, then he lands at position \(n - 1 \) and eventually falls off the Cliff of Disaster with probability \(R_{n-1} \).
- On the other hand, if his first hop is to the right, then he lands at position \(n + 1 \) and eventually falls off the Cliff of Disaster with probability \(R_{n+1} \).

Therefore, by the Total Probability Theorem, we have:

\[
R_n = \frac{1}{2} R_{n-1} + \frac{1}{2} R_{n+1}
\]

A Recurrence Solution

Let’s assemble all our observations about \(R_n \), the probability that Stencil falls from the Cliff of Disaster if he starts at position \(n \):

\[
R_0 = 1 \\
R_w = 0 \\
R_n = \frac{1}{2} R_{n-1} + \frac{1}{2} R_{n+1} \quad (0 < n < w)
\]
This is just a linear recurrence— and we know how to solve those! Uh, right? (We’ve
attached a quick reference guide to be on the safe side.)

There is one unusual complication: in a normal recurrence, R_n is written a function of
preceding terms. In this recurrence equation, however, R_n is a function of both a preceding
term (R_{n-1}) and a following term (R_{n+1}). This is no big deal, however, since we can just
rearrange the terms in the recurrence equation:

$$R_{n+1} = 2R_n - R_{n-1}$$

Now we’re back on familiar territory.

Let’s solve the recurrence. The characteristic equation is:

$$x^2 - 2x + 1 = 0$$

This equation has a double root at $x = 1$. There is no inhomogenous part, so the general
solution has the form:

$$R_n = a \cdot 1^n + b \cdot n1^n = a + bn$$

Substituting in the boundary conditions $R_0 = 0$ and $R_w = 1$ gives two linear equations:

$$0 = a$$
$$1 = a + bw$$

The solution to this system is $a = 0, b = 1/w$. Therefore, the solution to the recurrence is:

$$R_n = n/w$$

Interpreting the Answer

Our analysis shows that if we place Stencil n inches from the left side of an island w inches
across, then he falls off the right side with probability n/w. For example, if Stencil is $n = 4$
inches from the left side of an island $w = 12$ inches across, then he falls off the right side
with probability $n/w = 4/12 = 1/3$.

We can compute the probability that he falls off the left side by exploiting the symmetry
of the problem: the probability the falls off the left side starting at position n is the same as
the probability that he falls of the right side starting at position $w - n$, which is $(w - n)/n$.

This is bad news. The probability that Stencil eventually falls off one cliff or the other is:

$$\frac{n}{w} + \frac{w - n}{w} = 1$$

There’s no hope! The probability that he hops around on the island forever is zero. And
there’s even worse news. Let’s go back to the original problem where Stencil is 1 inch from
the left edge of an infinite plateau. In this case, the probability that he eventually falls into
the sea is:

$$\lim_{w \to \infty} \frac{w - 1}{w} = 1$$
Our little friend is doomed!

Hey, you know how in the movies they often make it look like the hero dies, but then he comes back in the end and everything turns out okay? Well, I’m not sayin’ anything, just pointing that out.

1.3 Life Expectancy

On the bright side, Stencil may get to hop around for a while before he sinks beneath the waves. Let’s use the same setup as before, where he starts out \(n \) inches from the left side of an island \(w \) inches across:

What is the expected number of hops he takes before falling off a cliff?

Let \(X_n \) be his expected lifespan, measured in hops. If he starts at either edge of the island, then he dies immediately:

\[
X_0 = 0 \\
X_w = 0
\]

If he starts somewhere in the middle of the island \((0 < n < w)\), then we can again break down the analysis into two cases based on his first hop:

- If his first hop is to the left, then he lands at position \(n - 1 \) and can expect to live for another \(X_{n-1} \) steps.

- If his first hop is to the right, then he lands at position \(n + 1 \) and his expected lifespan is \(X_{n+1} \).

Thus, by the Total Expectation Theorem and linearity, his expected lifespan is:

\[
X_n = 1 + \frac{1}{2} X_{n-1} + \frac{1}{2} X_{n+1}
\]

The leading 1 accounts for his first hop.
Random Walks

Solving the Recurrence

Once again, Stencil’s fate hinges on a recurrence equation:

\[
\begin{align*}
X_0 &= 0 \\
X_w &= 0 \\
X_n &= 1 + \frac{1}{2}X_{n-1} + \frac{1}{2}X_{n+1} \quad (0 < n < w)
\end{align*}
\]

We can rewrite the last line as:

\[
X_{n+1} = 2X_n - X_{n-1} - 2
\]

As before, the characteristic equation is:

\[
x^2 - 2x + 1 = 0
\]

There is a double-root at 1, so the homogenous solution has the form:

\[
X_n = a + bn
\]

There’s an inhomogenous term, so we also need to find a particular solution. Since this term is a constant, we should try a particular solution of the form \(X_n = c\) and then try \(X_n = c + dn\) and then \(X_n = c + dn + en^2\) and so forth. As it turns out, the first two possibilities don’t work, but the third does. Substituting in this guess gives:

\[
\begin{align*}
X_{n+1} &= 2X_n - X_{n-1} - 2 \\
(c + d(n + 1) + e(n + 1)^2 &= 2(c + dn + en^2) - (c + d(n - 1) + e(n - 1)^2) - 2 \\
e &= -1
\end{align*}
\]

All the \(c\) and \(d\) terms cancel, so \(X_n = c + dn - n^2\) is a particular solution for all \(c\) and \(d\). For simplicity, let’s take \(c = d = 0\). Thus, our particular solution is \(X_n = -n^2\).

Adding the homogenous and particular solutions gives the general form of the solution:

\[
X_n = a + bn - n^2
\]

Substituting in the boundary conditions \(X_0 = 0\) and \(X_w = 0\) gives two linear equations:

\[
\begin{align*}
0 &= a \\
0 &= a + bw - w^2
\end{align*}
\]

The solution to this system is \(a = 0\) and \(b = w\). Therefore, the solution to the recurrence equation is:

\[
X_n = wn - n^2 = n(w - n)
\]
Interpreting the Solution

Stencil’s expected lifespan is $X_n = n(w - n)$, which is the product of the distances to the two cliffs. Thus, for example, if he’s 4 inches from the left cliff and 8 inches from the right cliff, then his expected lifespan is $4 \cdot 8 = 32$.

Let’s return to the original problem where Stencil has the Cliff of Doom 1 inch to his left and an infinite plateau to this right. (Also, cue the “hero returns” theme music.) In this case, his expected lifespan is:

$$\lim_{w \to \infty} 1(w - 1) = \infty$$

Yes, Stencil is certain to eventually fall off the cliff into the sea— but his expected lifespan is infinite! This sounds almost like a contradiction, but both answers are correct!

Here’s an informal explanation. The probability that Stencil falls from the Cliff of Doom on the k-th step is approximately $\frac{1}{k^{3/2}}$. Thus, the probability that he falls eventually is:

$$\Pr\{\text{falls off cliff}\} \approx \sum_{k=1}^{\infty} \frac{1}{k^{3/2}}$$

You can verify by integration that this sum converges. The exact sum actually converges to 1. On the other hand, the expected time until he falls is:

$$\text{Ex (hops until fall)} \approx \sum_{k=1}^{\infty} k \cdot \frac{1}{k^{3/2}} = \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$$

And you can verify by integration that this sum diverges. So our answers are compatible!

2 The Gambler’s Ruin

We took the high road for a while, but now let’s discuss random walks in more conventional terms. A gambler goes to Las Vegas with n dollars in her pocket. Her plan is to make only $\$1$ bets on red or black in roulette, each of which she’ll win with probability $\frac{9}{19} \approx 0.473$. She’ll play until she’s either broke or up $\$100$. What’s the probability that she goes home a winner?

This is similar to the flea problem. The gambler’s wealth goes up and down randomly, just like the Stencil’s position. Going broke is analogous to falling off the Cliff of Doom and winning $\$100$ corresponds to falling off the Cliff of Disaster. In fact, the only substantive difference is that the gambler’s wealth is slightly more likely to go down than up, whereas Stencil was equally likely to hop left or right.

We determined the flea usually falls off the nearest cliff. So we might expect that the gambler can improve her odds of going up $\$100$ before going bankrupt by bringing more
money to Vegas. But here’s some actual data:

\[
\begin{align*}
 n &= \text{starting wealth} & \text{probability she reaches } n + \$100 \text{ before } \$0 \\
 \$100 &= 1 \text{ in } 37649.619496\ldots \\
 \$1000 &= 1 \text{ in } 37648.619496\ldots \\
 \$1,000,000,000 &= 1 \text{ in } 37648.619496\ldots
\end{align*}
\]

Except on the very low end, the amount of money she brings makes almost no difference! (The fact that only one digit changes from the first case to the second is a peripheral bit of bizarreness that we’ll leave in your hands.)

2.1 Finding a Recurrence

We can approach the gambling problem the same way we studied the life of Stencil. Suppose that the gambler starts with \(n \) dollars. She wins each bet with probability \(p \) and plays until she either goes bankrupt or has \(w \geq n \) dollars in her pocket. (To be clear, \(w \) is the total amount of money she wants to end up with, not the amount by which she wants to increase her wealth.) Our objective is to compute \(R_n \), the probability that she goes home a winner.

As usual, we begin by identifying some boundary conditions. If she starts with no money, then she’s bankrupt immediately so \(R_0 = 0 \). On the other hand, if she starts with \(w \) dollars, then she’s an instant winner, so \(R_w = 1 \).

Now we divide the analysis of the general situation into two cases based on the outcome of her first bet:

- She wins her first bet with probability \(p \). She then has \(n + 1 \) dollars and probability \(R_{n+1} \) of reaching her goal of \(w \) dollars.

- She loses her first bet with probability \(1 - p \). This leaves her with \(n - 1 \) dollars and probability \(R_{n-1} \) of reaching her goal.

Plugging these facts into the Total Probability Theorem gives the equation:

\[
R_n = pR_{n+1} + (1 - p)R_{n-1}
\]

2.2 Solving the Recurrence

We now have a recurrence for \(R_n \), the probability that the gambler reaches her goal of \(w \) dollars if she starts with \(n \):

\[
\begin{align*}
 R_0 &= 0 \\
 R_w &= 1 \\
 R_n &= pR_{n+1} + (1 - p)R_{n-1} \quad (0 < n < w)
\end{align*}
\]
The characteristic equation is:

\[px^2 - x + (1 - p) = 0 \]

The quadratic formula gives the roots:

\[
 x = \frac{1 \pm \sqrt{1 - 4p(1 - p)}}{2p} \\
 = \frac{1 \pm \sqrt{(1 - 2p)^2}}{2p} \\
 = \frac{1 \pm (1 - 2p)}{2p} \\
 = \frac{1 - p}{p} \text{ or } 1
\]

There’s an important point lurking here. If the gambler is equally likely to win or lose each bet, then \(p = 1/2 \), and the characteristic equation has a double root at \(x = 1 \). This is the situation we considered in the flea problem. The double root led to a general solution of the form:

\[R_n = a + bn \]

Now suppose that the gambler is \textit{not} equally likely to win or lose each bet; that is, \(p \neq 1/2 \). Then the two roots of the characteristic equation are different, which means that the solution has a completely different form:

\[R_n = a \cdot \left(\frac{1 - p}{p} \right)^n + b \cdot 1^n \]

In mathematical terms, this is where the flea problem and the gambler problem take off in completely different directions: in one case we get a linear solution and in the other we get an exponential solution!

Anyway, substituting the boundary conditions into the general form of the solution gives a system of linear equations:

\[
 0 = a + b \\
 1 = a \cdot \left(\frac{1 - p}{p} \right)^w + b
\]

Solving this system, gives:

\[
 a = \frac{1}{\left(\frac{1 - p}{p} \right)^w - 1} \\
 b = -\frac{1}{\left(\frac{1 - p}{p} \right)^w - 1}
\]
Substituting these values back into the general solution gives:

\[R_n = \left(\frac{1}{\left(\frac{1-p}{p} \right)^w - 1} \right) \cdot \left(\frac{1-p}{p} \right)^n - \frac{1}{\left(\frac{1-p}{p} \right)^w - 1} \]

\[= \left(\frac{1-p}{p} \right)^n - 1 \]

\[\left(\frac{1-p}{p} \right)^w - 1 \]

(Suddenly, Stencil’s life doesn’t seem so bad, huh?)

2.3 Interpreting the Solution

We have an answer! If the gambler starts with \(n \) dollars and wins each bet with probability \(p \), then the probability she reaches \(w \) dollars before going broke is:

\[\left(\frac{1-p}{p} \right)^n - 1 \]

\[\left(\frac{1-p}{p} \right)^w - 1 \]

Let’s try to make sense of this expression. If the game is biased against her, as with roulette, then \(1 - p \) (the probability she loses) is greater than \(p \) (the probability she wins). If \(n \), her starting wealth, is also reasonably large, then both exponentiated fractions are big numbers and the -1’s don’t make much difference. Thus, her probability of reaching \(w \) dollars is very close to:

\[\left(\frac{1-p}{p} \right)^n - w \]

In particular, if she is hoping to come out $100 ahead in roulette, then \(p = \frac{9}{19} \) and \(w = n + 100 \), so her probability of success is:

\[\left(\frac{10}{9} \right)^{-100} = 1 \text{ in 37648.619496} \]

This explains the strange number we arrived at earlier!

2.4 Some Intuition

Why does the gambler’s starting wealth have so little impact on her probability of coming out ahead? Intuitively, there are two forces at work. First, the gambler’s wealth has random upward and downward *swings* due to runs of good and bad luck. Second, her wealth has a steady, downward *drift* because she has a small expected loss on every bet. The situation is illustrated below:
For example, in roulette the gambler wins a dollar with probability $9/19$ and loses a dollar with probability $10/19$. Therefore, her expected return on each bet is $1 \cdot 9/10 + (-1) \cdot 10/19 = -1/19$. Thus, her expected wealth drifts downward by a little over 5 cents per bet.

One might think that if the gambler starts with a billion dollars, then she will play for a long time, so at some point she should have a lucky, upward swing that puts her $\$100$ ahead. The problem is that her capital is steadily drifting downward. And after her capital drifts down a few hundred dollars, she needs a huge upward swing to save herself. And such a huge swing is extremely improbable. So if she does not have a lucky, upward swing early on, she’s doomed forever. As a rule of thumb, drift dominates swings over the long term.

3 Pass the Broccoli

Here’s a game that involves a random walk. There are $n + 1$ people, numbered $0, 1, \ldots, n$, sitting in a circle:

\[
\begin{array}{ccccccccccc}
 & 0 & 1 & 2 & 3 & \ldots & k & k-1 \\
 n-1 & & & & & & & & \\
 n & \text{B} & & & & & & & \\
\end{array}
\]

The B indicates that person 0 has a big stalk of nutritious broccoli, which provides 250% of the US recommended daily allowance of vitamin C and is also a good source of vitamin A and iron. (Typical for a random walk problem, this game originally involved a pitcher of beer instead of a broccoli. We’re taking the high road again.)

Person 0 passes the broccoli either to the person on his left or the person on his right with equal probability. Then, that person also passes the broccoli left or right at random and so
Random Walks

on. After a while, everyone in an arc of the circle has touched the broccoli and everyone outside that arc has not. Eventually, the arc grows until all but one person has touched the broccoli. That final person is declared the winner and gets to keep the broccoli!

Suppose that you allowed to position yourself anywhere in the circle. Where should you stand in order to maximize the probability that you win? You shouldn’t be person 0; you can’t win in that position. The answer is “intuitively obvious”: you should stand as far as possible from person 0 at position $n/2$.

Let’s verify this intuition. Suppose that you stand at position $k \neq 0$. At some point, the broccoli is going to end up in the hands of one of your neighbors. This has to happen eventually; the game can’t end until at least one of them touches it. Let’s say that person $k-1$ gets the broccoli first. Now let’s cut the circle between yourself and your other neighbor, person $k+1$:

$$k (k-1) \ldots 3 2 1 0 n (n-1) \ldots (k+1)$$

Now there are two possibilities. If the broccoli reaches you before it reaches person $k+1$, then you lose. But if the broccoli reaches person $k+1$ before it reaches you, then every other person has touched the broccoli and you win! This is just the flea problem all over again: the probability that the broccoli hops $n-1$ people to the right (reaching person $k+1$) before it hops 1 person to the left (reaching you) is $1/n$. Therefore, our intuition was completely wrong: your probability of winning is $1/n$ regardless of where you’re standing!

Well, that’s it for 6.042. Good luck on the final exam and have a fun IAP!