Problem Set 3

Due: Monday, September 27 at 9pm

revised September 26, 2004, 1258 minutes

Problem 1. [25 points] Prove the following assertions:

(a) For all \(c \neq 0 \), \(a \mid b \) if and only if \(ca \mid cb \).

(b) Every common divisor of \(a \) and \(b \) divides \(\gcd(a, b) \).

(c) \(\gcd(ka, kb) = k \cdot \gcd(a, b) \) for all integers \(k > 0 \).

(d) \(\gcd(a \ rem \ b, b) = \gcd(a, b) \) (Hint: Prove the more general fact that \(\gcd(a - q \cdot b, b) = \gcd(a, b) \) for all integers \(q \).)

(e) \(nx \ rem \ dx = (n \ rem \ d) \cdot x \) when \(x \in \mathbb{N}^+ \).

Problem 2. [20 points] Use induction to prove the following statements, which were left unproved in lecture.

(a) \((a_1 \ rem \ n) \cdot (a_2 \ rem \ n) \cdots (a_k \ rem \ n) \equiv a_1 \cdot a_2 \cdots a_k \pmod{n} \)

You may use the following two facts, which were proved in lecture:

1. If \(a_1 \equiv b_1 \pmod{n} \) and \(a_2 \equiv b_2 \pmod{n} \), then \(a_1a_2 \equiv b_1b_2 \pmod{n} \).
2. \((a \ rem \ n) \equiv a \pmod{n} \)

(b) Let \(p \) be a prime. If \(p \mid a_1 \cdot a_2 \cdots a_n \), then \(p \) divides some \(a_i \).

You may use the fact, proved in lecture, that if \(p \) is a prime and \(p \mid ab \), then \(p \mid a \) or \(p \mid b \).

Problem 3. [15 points] Prove that the greatest common divisor of three integers \(a, b, \) and \(c \) is equal to their smallest positive linear combination; that is, the smallest positive value of \(sa + tb + uc \), where \(s, t, \) and \(u \) are integers.
Problem 4. [10 points] Let \(S_k = 1^k + 2^k + \ldots + (p-1)^k \), where \(p \) is an odd prime and \(k \) is a positive multiple of \(p-1 \). Use Fermat’s theorem to prove that \(S_k \equiv -1 \pmod{p} \).

Problem 5. [10 points] Let \(N \) be a number whose decimal expansion consists of \(3^n \) identical digits. Show by induction that \(3^n \mid N \). For example:

\[
3^2 \mid 777777777
\]

\[
3^2 = 9 \text{ digits}
\]

Problem 6. [20 points] Suppose that you have an \(a \)-gallon bucket and a \(b \)-gallon bucket where \(a \leq b \). You also have access to a fountain. In lecture, we proved that you can measure out only multiples of \(\gcd(a, b) \) gallons. The goal of this problem is to prove the converse: you can measure out exactly \(n \) gallons in one bucket provided \(n \) is a multiple of \(\gcd(a, b) \) and \(0 \leq n \leq b \).

Getting exactly \(b \) gallons is easy: fill the \(b \)-gallon bucket. For all other quantities, consider the following procedure:

1. Fill the \(a \)-gallon bucket.
2. Pour the entire contents of the \(a \)-gallon bucket into the \(b \)-gallon bucket, dumping out the \(b \)-gallon bucket whenever it becomes full.

(a) Give a concise expression for the amount of water in the \(b \)-gallon bucket after \(k \) repetitions of this procedure.

(b) Suppose that \(a \) and \(b \) are relatively prime. Show that this expression never takes on the same value twice as \(k \) ranges over the set \(\{0, 1, 2, \ldots, b-1\} \).

(c) Show that the expression in part (a) takes on all values in \(\{0, 1, 2, \ldots, b-1\} \) as \(k \) ranges over the set \(\{0, 1, 2, \ldots, b-1\} \). In other words, every number of gallons between 0 and \(b-1 \) is obtained within \(b-1 \) repetitions of the procedure.

(d) Now suppose \(a \) and \(b \) are not relatively prime. Prove that the values this expression takes on are exactly the nonnegative multiples of \(\gcd(a, b) \) less than \(b \).

You may find it helpful to isolate the common and relatively prime parts of \(a \) and \(b \). Specifically, define \(a' \) and \(b' \) so that \(a = a' \gcd(a, b) \) and \(b = b' \gcd(a, b) \). Note that \(a' \) and \(b' \) are relatively prime; otherwise, \(a \) and \(b \) would have a greater common divisor.