In-Class Examples

Decidable versus Enumerable

Recall that a language L is **decidable** if there exists a program P such that for any string w, $P(w)$ halts and

$$P(w) = \begin{cases} 1 & \text{if } w \in L \\ 0 & \text{if } w \notin L \end{cases}$$

A language L is **enumerable** if there exists a program P that prints out all the strings in L. In other words, P must only print out strings that belong to L, and for any string $w \in L$, P must run a finite amount of time before printing out w.

- **Are all decidable languages enumerable?**

 Solution: Yes. We can enumerate a decidable language L by going through all the strings in Σ^* in lexicographic order and skipping the ones that are not in L.

- **Are all enumerable languages decidable?**

 Solution: No. The halting set K is enumerable but not decidable. To enumerate K we can loop from $n = 1$ to ∞ and at each iteration of the loop print out all the programs of size at most n that halt in at most n steps.

The Digits of π

To print out all the digits of π would take forever. Therefore, any program that prints out all the digits of π must not halt. Let $F(n)$ be the maximum number of digits of π that an n-character Java program can print out and still halt. Show that $F(n)$ is not computable.

Solution: We will show that if $F(n)$ was computable then the halting set would be decidable. Given an arbitrary program P, define Q_P as follows.

Procedure Q_P:

1. Do:

 (a) Print out the next digit of π.

 (b) Simulate $P(P)$ for one more step. If $P(P)$ halts, then halt.

Let $k = F(length(Q_P))$. Suppose we run Q_P for k iterations of the loop. If Q_P halts then P must halt. If Q_P does not halt in k iterations then it must never halt, because otherwise it would print out more than k digits of π. Thus by running Q_P for k iterations we can determine whether P halts, contradicting the fact that the halting set is undecidable.

Group Problems

The Halting Set Revisited

In lecture we defined the halting set $K = \{ P \mid P$ is a program and $P(P)$ halts$\}$, and proved that K is undecidable. Suppose we instead considered programs that take no input. Show that the set $K' = \{ P \mid P$ is a program and P halts $\}$ is also undecidable.
Solution: Given an arbitrary program P, let Q_P be the program that takes no input and simply calls $P(P)$. So Q_P halts if and only if $P(P)$ halts, or equivalently $Q_P \in K'$ if and only if $P \in K$. Thus if K' was decidable then K would also be decidable, which contradicts what we proved in lecture.

Resolving Berry’s Paradox

Suppose you are given a program called meaning that takes as input a string with less than 1000 characters and outputs the integer denoted by that string. For example, $\text{meaning} (“two plus two”) \text{ would output 4. If s is a string with } \geq 1000 \text{ characters, } \text{meaning}(s) \text{ prints an error message. Assume that garbage sentences are mapped to zero, so for example } \text{meaning} (“fdajsfdsalk”) \text{ would output 0. Finally, note that the } \text{meaning} \text{ function is computable because there are only a limited number of valid inputs, so if nothing else it could be implemented using a huge table.}

(a) Describe how you would write a script that computes the smallest non-negative integer n such that for all strings s with < 1000 characters, $\text{meaning}(s) \neq n$.

Solution: Enumerate all strings s with < 1000 characters, and for each one run $\text{meaning}(s)$. Record all the values output by $\text{meaning}(s)$ in a list. Then return the smallest non-negative integer that isn’t on the list.

(b) Let $m = \text{meaning} (“the smallest non-negative integer that can’t be described using less than 1000 characters”)$. Argue that $m \neq n$ (where n is the value output by the script from part (a)).

Solution: By definition, the value n returned by the script did not appear on a list that contained m.

(c) Berry’s Paradox is the fact that the phrase “the smallest non-negative integer that can’t be described using less than 1000 characters” either denotes a unique integer or does not, but either interpretation leads to a contradiction. Explain why this is not such a paradox after all.

Solution: Berry’s Paradox is only a paradox if you assume that m and n must be the same integer, but this assumption is always false.