Lecture Review

Lecture 21: Probability Basics

- Understand the definitions of sample space, event, and probability distribution.
- Uniform Distribution: randomly picking one of \(n \) different balls from a bucket, each with prob \(1/n \).
- Binomial (Bernoulli) Distribution: the number of heads from \(n \) independent coin flips with bias \(p \).
- Understand what it means for two events \(A \) and \(B \) to be independent. Formally, \(P(A|B) = P(A) \).

Lecture 22: Random Variables and Great Expectations

- A random variable (RV) is a function that maps every element in the sample space to a value.
- Intuitively, the expected value of a random variable is a weighted average over all elements in the sample space. Formally, \(E[X] = \sum_{A \in \Omega} X(A) \cdot P(A) \).
- An indicator RV for an event \(A \) is a RV that has value 1 for elements in \(A \), and 0 otherwise.
- Linearity of Expectation says that \(E[X + Y] = E[X] + E[Y] \). This applies even if \(X \) and \(Y \) are not independent. This can be very useful in conjunction with indicator RVs.

Independence and Conditional Probability

Consider independently flipping 3 fair coins.
Let \(A \) be the event that there are exactly 2 heads.
Let \(B \) be the event that the first and last coin land on opposite sides.
Question: Are \(A \) and \(B \) independent?

Inclusion-Exclusion in Probability

For any events \(A \) and \(B \), \(P(A \cup B) = P(A) + P(B) - P(A \cap B) \).
Suppose you are randomly dealt a 5-card poker hand.
Let \(A \) be the event that there is at least a pair of some rank.
Let \(B \) be the event that you are dealt at least one Jack.
Question: What is \(P(A \cup B) \)?

Linearity of Expectation

Consider independently flipping \(n \) fair coins, and lining them up on the table. What is the expected number of strings of 3 consecutive heads?
Group Problems

Please work on these problems in groups of 3 people. When a problem is solved, make sure everybody in your group understands the solution. Be prepared to present your solution to the class.

Understanding Independence

Question: Are the events A and B in the above picture independent?

What About Three-Ways?

Suppose events A, B, C are pairwise independent. Is it necessarily true that $P(A) = P(A | B \cap C)$? If true, prove it. If false, provide a counterexample.

Hand-Raising

Consider the n students in this recitation section. Suppose that for any given question asked by the TA, each student knows the answer with $2/3$ probability, but given he knows the answer, only volunteers with probability $1/2$. If the TA asks a question, what is the expected number of students that will know the answer and volunteer a solution?