Review: infinite sets

Cantor’s Definition (1874):
Two sets are defined to have the same cardinality if and only if they can be placed into 1-1 correspondence.

Continuum Hypothesis

\[\mathbb{R}_1 = 2^{\mathbb{N}_0} \]

There are no infinite sets between \(\mathbb{N} \) and \(\mathbb{R} \)

Warm-up Problem

Consider all polynomials with integer coefficients. What is the cardinality of this set?

Consider all polynomials with rational coefficients. What is the cardinality of this set?
Problem
Consider the algebraic numbers.
What is the cardinality of this set?

Problem
Consider the transcendental numbers.
What is the cardinality of this set?

“I see it, but I don’t believe it”

\mathbb{R}^n can be put in 1-1 correspondence with [0,1].

Cantor’s set
Tiny sets (measure zero) with uncountably many points

Cantor’s set
Cantor Set is formed by repeatedly cutting out middle thirds of a line segment:

How much did we remove?
What is the size of the Cantor set?
Cantor’s set

How much did we remove?

Thinking of the size as a length, we removed everything.

Therefore, the Cantor set is very tiny.

On the other hand, the Cantor set is not empty, since we did not remove the end points 0, 1, 1/3, 2/3, ...

We will show that the Cantor set is the big as the whole interval (0,1).

We remove all the ternary decimals with 1 in the decimal place.

\[
\begin{align*}
\frac{1}{3} \to (0.1, 0.2) \\
\frac{1}{9} \to (0.01, 0.02) \\
\frac{7}{9} \to (0.21, 0.22)
\end{align*}
\]

The Cantor set is a set of numbers whose ternary decimal representations consist entirely of 0's and 2's.
Problem

Does 1/12 belong to the Cantor set?

Cantor's set

Can you find a 1-1 map between \(\{0,1\} \) and the Cantor set?

Cantor's set

The one-to-one map between \(\{0,1\} \) and the Cantor set is called the "Devil's Staircase".
To see this bijection, take a number from the Cantor set in ternary notation, divide its digits by 2, and you get all coefficients in binary notation.

A little bit further

Mathematically speaking the base is not necessarily an integer

Cantor's dust \(\leftrightarrow \sum_{k=1}^{\infty} \frac{c_k}{3^k} \)

Generalization \(\leftrightarrow \sum_{k=1}^{\infty} c_k b^k \)

Turing's Legacy:

A problem is a yes/no question.
An algorithm is a solution to a problem if it correctly provides the appropriate yes/no answer to the problem.
A problem is decidable if it has a solution.
Turing’s Legacy:

Are all problems decidable?

Decidable and Computable

Subset S of Σ^* \iff Function f_S

x in S $\iff f_S(x) = 1$

x not in S $\iff f_S(x) = 0$

Set S is decidable \iff function f_S is computable

Sets are "decidable" (or undecidable), whereas
functions are "computable" (or not)

The HELLO assignment

Write a JAVA program to output the word "HELLO" on the screen and halt.

Space and time are not an issue.
The program is for an ideal computer.

PASS for any working HELLO.
No partial credit.

Grading Script

The grading script G must be able to take any Java program P and grade it.

$$G(P) = \begin{cases}
\text{Pass, if } P \text{ prints only the word } \text{"HELLO" and halts}. \\
\text{Fail, otherwise.}
\end{cases}$$

How exactly might such a script work?

What kind of program
could a student who hated his/her TA hand in?

Nasty Program

```java
n:=0;
while (n is not a counter-example to the Riemann Hypothesis) {
    n++;
}
print "Hello"
```

The nasty program is a PASS if and only if the Riemann Hypothesis is true.
Despite the simplicity of the HELLO assignment, there is no program to correctly grade it!
And we will prove this.

The theory of what can and can't be computed by an ideal computer is called
Computability Theory or Recursion Theory.

Are all reals describable?
Are all reals computable?

We saw that computable \Rightarrow describable, but do we also have describable \Rightarrow computable?

The "grading function" we just described is not computable! (We'll see a proof soon.)

Computable Function

Fix any finite set of symbols, Σ.
Fix any precise programming language, e.g., Java.

Σ^* = All finite strings of symbols from Σ
including the empty string ε

A program is any finite string of characters that is syntactically valid.

A function $f: \Sigma^* \rightarrow \Sigma^*$ is computable if there is a program P that when executed on an ideal computer, computes f.

Theorem: Every infinite subset S of Σ^* is countable

Proof:
Sort S by first by length and then alphabetically.
Map the first word to 0, the second to 1, and so on....

There are only countably many Java programs.
Hence, there are only countably many computable functions.
Uncountably many functions

The functions \(f : \Sigma^* \to \{0,1\} \) are in 1-1 onto correspondence with the subsets of \(\Sigma^* \) (the powerset of \(\Sigma^* \)).

<table>
<thead>
<tr>
<th>Subset (S) of (\Sigma^*)</th>
<th>Function (f_S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x) in (S)</td>
<td>(f_S(x) = 1)</td>
</tr>
<tr>
<td>(x) not in (S)</td>
<td>(f_S(x) = 0)</td>
</tr>
</tbody>
</table>

Hence, the set of all \(f : \Sigma^* \to \{0,1\} \) has the same size as the power set of \(\Sigma^* \). And since \(\Sigma^* \) is countably infinite, its power set is uncountably infinite.

Countably many computable functions.

Uncountably many functions from \(\Sigma^* \) to \(\{0,1\} \).

Thus, most functions from \(\Sigma^* \) to \(\{0,1\} \) are not computable.

Can we explicitly describe an incomputable function?

Can we describe an interesting incomputable function?

Notation And Conventions

Fix a single programming language (Java)

When we write program \(P \) we are talking about the text of the source code for \(P \)

\(P(x) \) means the output that arises from running program \(P \) on input \(x \), assuming that \(P \) eventually halts.

The meaning of \(P(P) \)

It follows from our conventions that \(P(P) \) means the output obtained when we run \(P \) on the text of its own source code.
P(P) ... So that’s what I look like

The Halting Set K

Definition:
K is the set of all programs P such that P(P) halts.
K = { P | P(P) halts }

The Halting Problem
K = { P | P(P) halts }

Is there a program HALT such that:
HALT(P) = yes, if P ∈ K
HALT(P) = no, if P ∉ K

HALT decides whether or not any given program is in K.

THEOREM: There is no program to solve the halting problem
(Alan Turing, 1937)

Suppose a program HALT existed that solved the halting problem.

We will call HALT as a subroutine in a new program called CONFUSE.

CONFUSE

boolean CONFUSE(P)
{
 if (HALT(P) == True)
 then loop forever;
 else return True;
}

Does CONFUSE(CONFUSE) halt?

Does CONFUSE(CONFUSE) halt?

Consider both cases
1. CONFUSE(CONFUSE) halts then (by def.) HALT(CONFUSE) is True.
 But then CONFUSE will loop forever.

Does CONFUSE(CONFUSE) halt?
Does CONFUSE(CONFUSE) halt?

boolean CONFUSE(P)
{
 if (HALT(P) == True)
 then loop forever;
 else return True;
}

Consider both cases
2. CONFUSE(CONFUSE) runs forever then (by def.) HALT(CONFUSE) is False.
But then CONFUSE halts.

Alan Turing (1912–1954)

Theorem: [1937]
There is no program to solve the halting problem

Turing’s argument is essentially the reincarnation of Cantor’s Diagonalization argument that we saw in the previous lecture.

Programs (computable functions) are countable, so we can put them in a (countably long) list

YES, if P(P_i) halts
No, otherwise

CONFUSE(P_i) halts iff d_i = no
(The CONFUSE function is the negation of the diagonal.)
Hence CONFUSE cannot be on this list.
Is there a real number that can be described, but not computed?

Consider the real number R_k whose binary expansion has a 1 in the j^{th} position iff $P_j \in K$ (i.e., if the j^{th} program halts).

Proof that R_k cannot be computed

Suppose it is, and program FRED computes it, then consider the following program:

```
MYSTERY(program text P)
for j = 0 to forever do {
    if (P == P_j)
        then use FRED to compute j^{th} bit of R_k
        return YES if (bit == 1), NO if (bit == 0)
}
```

MYSTERY solves the halting problem!

Self-Reference Puzzle

Write a program that prints itself out as output. No calls to the operating system, or to memory external to the program.

HW: Auto Cannibal Maker

Write a program AutoCannibalMaker that takes the text of a program EAT as input and outputs a program called SELF_{EAT}.

When SELF_{EAT} is executed, it should output EAT(SELF_{EAT})

Suppose HALT with no input was programmable in JAVA.

Write a program AutoCannibalMaker that takes the text of a program EAT as input and outputs a program called SELF_{EAT}.

When SELF_{EAT} is executed it should output EAT(SELF_{EAT})

Let EAT(P) = halt, if P does not halt loop forever, otherwise.

What does SELF_{EAT} do?
Contradiction! Hence EAT does not have a corresponding JAVA program.