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Hidden Markov Models

• Sometimes we need to model things that change over time. We will assume that time is
discrete, divided into individual timesteps. At each timestep t, the world (modeled as
a set of random variables Xt) can be in a certain state (assignment of the variables),
and it can transition to a different state at the next timestep.

• A stationary process is one in which the transition probabilities and the distributions
of the random variables do not change over time.

• A Markov process or Markov chain is a sequence of random variables X0, X1, ..., Xt

that follows the Markov assumption:
P (Xt|X0:(t−1)) = P (Xt|X(t−k):(t−1))
or in other words, the distribution of Xt depends on only k of the previous X’s (where
k is some fixed finite number, usually 1; the process is called a kth order Markov
process). In a first-order Markov model, this distribution is the transition model.

• We will assume that the state variables Xt are unobservable, but there are some evi-
dence variables Et that we observe. The sensor Markov assumption is:
P (Et|X0:t, E1:(t−1)) = P (Et|Xt)
or in other words, the evidence at the current timestep depends only on the current
state, not any previous states or previous evidence. This distribution is the observa-
tion model.

• In a Hidden Markov Model (HMM), we model the unobserved state of the world
as a single discrete variable (Xt is one random variable instead of a set of them), and we
have a process that follows the Markov assumption and the sensor Markov assumption.

• There are several types of inference tasks that we might want to do:

· In filtering (also called state estimation), we compute P (Xt|e1:t), the distribu-
tion of values for the current state given all the observations.

· In prediction, we compute P (Xt+k|e1:t), the distribution of values for some state
that is k steps into the future, given all the observations up to the present.

· In smoothing, we compute P (Xk|e1:t), the distribution of values for some past
state (k < t), given all the observations up to the present.

· In finding the most likely explanation, we compute arg maxx0:t P (x0:t|e1:t), the
most likely values for all states up to the present, given all the observations up to
the present.
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Exercises

1. Knowing that you’re an expert on machine learning techniques, you’re called in by
the Medical Association of Sports Scientists to investigate the link between sprains
and knee injuries over time. You observe individual athletes on a monthly basis and
observe whether or not the athlete has a sprain (S = true if a sprain is present); from
this you wish to infer the condition of the athlete’s patella (P = true if a patellar
injury is present; patellar injuries are known to cause sprains1). Your friend who is in
medical school stops by and tells you the following useful information:

P (P0) = 0.5

P (Pt|Pt−1) = 0.7

P (Pt|¬Pt−1) = 0.3

P (St|Pt) = 0.9

P (St|¬Pt) = 0.2

You quickly realize that P follows a first-order Markov process, and S satisfies a sensor
Markov assumption based on P . Determine the following:

(a) P (P1)

(b) P (P1|S1 = true)

(c) P (P2|S1 = true)

(d) P (P2|S1 = true, S2 = true)

(e) Write a formula for computing P (P3|S1:3) using only values that you have calcu-
lated above.

(f) In addition to the above observations, you find out S3 = false. What is the
probability of (P3 = false|S1:3)?

(g) Suppose that you make no further sprain measurements beyond S3. Give an
approximation for the probability distribution of P10.

1The 6.034 staff will not be held responsible for any liabilities caused by use of this rule in medical
applications.
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Search Review

• Basic search algorithms aim to find the shortest path in a graph with undirected,
unlabeled edges. They follow a common structure:

Until we find a goal or the agenda is empty:

Extract a node from the agenda

Expand it (find its children)

Add its children to the agenda

• Breadth-First Search implements the agenda as a queue, whereas Depth-First
Search implements the agenda as a stack.

• Pruning Rule 1: Don’t consider any path that visits the same state twice.

• Pruning Rule 2: Don’t consider any path that visits a state that you have already
visited via some other path. (BFS only.)

• Often we will want to assign weights to edges (eg. Google Maps; some streets might be
physically longer or might be more congested.) Uniform-Cost Search implements
the agenda as a priority queue sorted by path length and extracts the minimum length
path at each step.

• Search can often be sped up through use of heuristics. Popular heuristics are Eu-
clidean distance, Manhattan distance, and Hamming distance.

• Hill-Climbing Search is similar to DFS, except it picks the child with the lowest
heuristic cost at each step. It is not guaranteed to find a global optimum.

• A* Search is similar to Uniform-Cost Search, except it sorts paths in the agenda by
their total cost so far plus their remaining heuristic cost.

• An A* search is only guaranteed to return the shortest path if its heuristic is admis-
sible, and can be made much faster if its heuristic is also consistent.

• Suppose G is our goal node, h(N) is the heuristic cost to reach G from N , C(N) is the
length of the shortest path between N and G, and d(A,B) is the distance from A to
B, assuming B is a direct child of A. A heuristic is admissible if ∀N, h(N) ≤ C(N). A
heuristic is consistent if h(N) ≤ d(N,P ) + h(P ) and h(G) = 0. Consistent heuristics
are also admissible.


