Linear Algebra Review

- A vector is an ordered list of values. It is often denoted using angle brackets: (a, b), and its variable name is often written in bold (z) or with an arrow (z). We can refer to an individual element of a vector using its index: for example, the first element of z would be z₁ (or z₀, depending on how we're indexing). Each element of a vector generally corresponds to a particular dimension or feature, which could be discrete or continuous; often you can think of a vector as a point in Euclidean space.
- The magnitude (also called norm) of a vector $\mathbf{x} = \langle x_1, x_2, ..., x_n \rangle$ is $\sqrt{x_1^2 + x_2^2 + ... + x_n^2}$, and is denoted $|\mathbf{x}|$ or $||\mathbf{x}||$.
- The sum of a set of vectors is their elementwise sum: for example, (a, b) + (c, d) = (a + c, b + d) (so vectors can only be added if they are the same length). The dot product (also called scalar product) of two vectors is the sum of their elementwise products: for example, (a, b) · (c, d) = ac + bd. The dot product x · y is also equal to ||x|||y|| cos θ, where θ is the angle between x and y.
- A matrix is a generalization of a vector: instead of having just one row or one column, it can have m rows and n columns. A square matrix is one that has the same number of rows as columns. A matrix's variable name is generally a capital letter, often written in bold. The entry in the *i*th row and *j*th column of a matrix **A** is referred to as $a_{i,j}$, or sometimes $\mathbf{A}_{i,j}$ or $\mathbf{A}[i, j]$.
- The sum of two matrices is their elementwise sum. The **product** AB of two matrices A and B is defined as $(AB)_{i,k} = \sum_j A_{i,j} B_{j,k}$. To multiply two matrices, the number of columns in the first matrix must equal the number of rows in the second matrix; the product of an *m*-by-*n* matrix and an *n*-by-*p* matrix will be an *m*-by-*p* matrix. Matrix multiplication is associative ((AB)C = A(BC)) but not commutative (usually $AB \neq BA$).
- The transpose of a matrix \mathbf{A} , denoted \mathbf{A}^T (or \mathbf{A}^t or \mathbf{A}^\top), swaps the rows with the columns: $(\mathbf{A}^T)_{j,i} = \mathbf{A}_{i,j}$. The transpose of an *m*-by-*n* matrix will be an *n*-by-*m* matrix. The *n*-by-*n* identity matrix \mathbf{I}_n (or just \mathbf{I} when it's unambiguous) is a square matrix with 1's on the diagonal (entries where i = j) and 0's everywhere else. For any *m*-by-*n* matrix \mathbf{A} , $\mathbf{A}\mathbf{I}_n = \mathbf{A}$, and for any *n*-by-*p* matrix \mathbf{B} , $\mathbf{I}_n\mathbf{B} = \mathbf{B}$. The inverse of a square matrix \mathbf{A} , denoted \mathbf{A}^{-1} , is the matrix for which $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}(=\mathbf{A}\mathbf{A}^{-1})$. A non-invertible square matrix is called singular.

- A hyperplane is a higher-dimensional generalization of lines and planes. The equation of a hyperplane is $\mathbf{w} \cdot \mathbf{x} + b = 0$, where \mathbf{w} is a vector normal to the hyperplane and b is an offset. Note that we can multiply by any constant and preserve the equality; if we multiply by $1/||\mathbf{w}||$, we get a new equation $\hat{\mathbf{w}} \cdot \mathbf{x} + b' = 0$, where $\hat{\mathbf{w}} = \mathbf{w}/||\mathbf{w}||$ is the **unit normal vector** and $b' = b/||\mathbf{w}||$ is the distance from the hyperplane to the origin.
- For any vector \mathbf{x} we can compute $y = \mathbf{w} \cdot \mathbf{x} + b$. If y = 0, then \mathbf{x} is on the hyperplane. If y > 0, then \mathbf{x} is on one side of the hyperplane, and if y < 0, then \mathbf{x} is on the other side of the hyperplane. This will be useful when we are developing linear classifiers.
- The **gradient** of a surface at a point is a vector whose magnitude is the highest rate of increase from that point and whose direction is the direction of that rate of increase. Formally, the gradient of a function $f(x_1, x_2, ..., x_n)$ is $\nabla f = \langle \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n} \rangle$. If we are trying to find a maximum value, we can use a method called **gradient ascent** (or gradient descent if we're trying to find a minimum), in which we take steps in the direction of the gradient until the value of the function stops increasing.

Exercises

1. Given the following matrix, A:

$$\left(\begin{array}{cc} -1 & 1\\ 0 & 2 \end{array}\right)$$

find $(A^{\mathrm{T}}A)^{-1}$. Show that any matrix $A^{\mathrm{T}}A$ is always symmetric.

- 2. Given the equation for a hyperplane, $\mathbf{w} \cdot \mathbf{x} + b$, find the equation for the unit normal vector to the plane.
- 3. Derive the formula for distance from a plane to an arbitrary point in \mathbb{R}^3 . Generalize to \mathbb{R}^n .
- 4. You are given the following equation:

$$L(\mathbf{w}) = \sum_{j=1}^{N} (y_j - (\mathbf{w}^{\mathrm{T}} \mathbf{x}_j))^2$$

where each y_j and \mathbf{x}_j is constant, and \mathbf{x}_j and \mathbf{w} are vectors with the same number k of components. Find $\frac{\partial L}{\partial w_i}$, where w_i is the *i*th component of \mathbf{w} .

5. Apply gradient descent to find the minimum of the function:

$$f(x) = (x-3)^2$$

starting at x = 0 and with $\alpha = \frac{1}{3}$. Do this again for $\alpha = 1$.