
Recitation 9 Solutions
1.

163

a. ForUA we have

UA(s)=R(s) + max
a

∑

s′
P (s′|a, s)UB(s

′)

and forUB we have

UB(s)=R(s) + min
a

∑

s′
P (s′|a, s)UA(s

′) .

b. To do value iteration, we simply turn each equation from part (a) into a Bellman update
and apply them in alternation, applying each to all states simultaneously. The process
terminates when the utility vector for one player is the sameas the previous utility
vectorfor the same player(i.e., two steps earlier). (Note that typicallyUA andUB are
not the same in equilibrium.)

c. The state space is shown in Figure S17.2.
d. We mark the terminal state values in bold and initialize other values to 0. Value iteration

proceeds as follows:

(1,4) (2,4) (3,4) (1,3) (2,3) (4,3) (1,2) (3,2) (4,2) (2,1) (3,1)
UA 0 0 0 0 0 +1 0 0 +1 –1 –1
UB 0 0 0 0 –1 +1 0 –1 +1 –1 –1
UA 0 0 0 –1 +1 +1 –1 +1 +1 –1 –1
UB –1 +1 +1 –1 –1 +1 –1 –1 +1 –1 –1
UA +1 +1 +1 –1 +1 +1 –1 +1 +1 –1 –1
UB –1 +1 +1 –1 –1 +1 –1 –1 +1 –1 –1

and the optimal policy for each player is as follows:

(1,4) (2,4) (3,4) (1,3) (2,3) (4,3) (1,2) (3,2) (4,2) (2,1) (3,1)
π∗A (2,4) (3,4) (2,4) (2,3) (4,3) (3,2) (4,2)
π∗B (1,3) (2,3) (3,2) (1,2) (2,1) (1,3) (3,1)

(1,4)

(1,3)

(1,2)

(2,4)

(2,3)

(2,1)

(3,4)

(3,2)

(3,1)

(4,3)

(4,2)

−1 −1

+1

+1

Figure S17.2 State-space graph for the game in Figure 5.17.

17.8

a. r = 100.
u l .
u l d
u l l

1



2.

4 Reinforcement Learning (13 points)

Consider an MDP with three states, called A, B and C, arranged in a loop.

A B C0.8 0.8

0.2 0.2 0.2

0.8

R(C)=1

There are two actions available in each state:

• Moves: with probability 0.8, moves to the next state in the loop and with probability 0.2,
stays in the same state.

• Stays: with probability 1.0 stays in the state.

There is a reward of 1 in state C and zero reward elsewhere. The agent starts in state A.
Assume that the discount factor is 0.9, that is, γ = 0.9.

1. (6 pts) Show the values of Q(a, s) for 3 iterations of the TD Q-learning algorithm (equation
21.8 in Russell & Norvig):

Q(a, s)← Q(a, s) + α(R(s) + γmax
a′

Q(a′, s′)−Q(a, s))

Let α = 1, note the simplification that follows from this. Assume we always pick the Move
action and end up moving to the adjacent state. That is, we see a state-action sequence: A,
Move, B, Move, C, Move, A. The Q values start out as 0.

This wording is a bit ambiguous. If we display the values after each action in one trail, we
get:

iter=0 iter=1 iter=2 iter=3

Q(Move,A) 0 0 0 0

Q(Stay,A) 0 0 0 0

Q(Move,B) 0 0 0 0

Q(Stay,B) 0 0 0 0

Q(Move,C) 0 0 0 1

Q(Stay,C) 0 0 0 0

If we think about the 3 actions as a trial and show what happens after each full trial, we get:

iter=0 iter=1 iter=2 iter=3

Q(Move,A) 0 0 0 0.81

Q(Stay,A) 0 0 0 0

Q(Move,B) 0 0 0.9 0.9

Q(Stay,B) 0 0 0 0

Q(Move,C) 0 1 1 1

Q(Stay,C) 0 0 0 0

72. (2 pts) Characterize the weakness of Q-learning demonstrated by this example. Hint. Imagine
that the chain were 100 states long.

The Q-learning updates are very local. In a chain of 100 states we would have to go around
100 times before we had non-zero Q values in each state.

3. (3 pts) Why might a solution based on ADP (adaptive dynamic programming) be better than
Q-learning?

ADP updates all the states to make optimal use of whatever information we have discovered.
So, for example, all states leading to a good state would have their values increased.

4. (2 pts) On the other hand, what are the disadvantages of ADP based approaches (compared
to Q-learning)?

• ADP is global. If there are lots of states then the cost of these updates will be very large.

• If we use ADP to learning the utility/value function directly (instead of the Q-function),
this will require also learning the transition function so that we can compute the action
with the best expected utility.

8

2


