14.11 This question exercises many aspects of the student’s stadeling of Bayesian net-
works and uncertainty.

a. A suitable network is shown in Figure S14.2. The key aspaesthe failure nodes are
parents of the sensor nodes, and the temperature node isrg paboth the gauge and
the gauge failure node. It is exactly this kind of correlatihat makes it difficult for
humans to understand what is happening in complex systethsiniieliable sensors.

Figure S14.2 A Bayesian network for the nuclear alarm problem.

b. No matter which way the student draws the network, it shooltbe a polytree because
of the fact that the temperature influences the gauge in twswa

c. The CPT forG is shown below. Students should pay careful attention teémeantics
of F, which is true when the gaugefeulty, i.e.,notworking.



T=Normal| T =High
Fog | -Fg | Fg | ~Fa

G=Normal| vy r |1—y|l—=
G = High l-y|ll—2| y T

d. The CPT forA is as follows:

G = Normal|G= High
Fy| —Fx |Fa|—Fa

A0 0 0 1
-All 1 1 0

e. This part actually asks the student to do something usdaihe by Bayesian network
algorithms. The great thing is that doing the calculatiothaiit a Bayesian network
makes it easy to see the nature of the calculations thatgioeithims are systematizing.
Itillustrates the magnitude of the achievement involvedreating complete and correct
algorithms.

AbbreviatingT = High andG = High by T andG, the probability of interest here
is P(T|A,—Fg,—Fy4). Because the alarm’s behavior is deterministic, we caroreas
that if the alarm is working and sound& must beHigh. Becausef'y and A are
d-separated frorff’, we need only calculat®(T'|-Fg, G).

There are several ways to go about doing this. The “oppatighiway is to notice
that the CPT entries give U3(G|T, ~F ), which suggests using the generalized Bayes’
Rule to switchGG andT" with —F as background:

P(T|-Fq,G) x P(G|T,~Fg)P(T|~Fg)
We then use Bayes’ Rule again on the last term:

P(T|-Fg,G) o P(G|T, ~Fg)P(~Fg|T)P(T)
A similar relationship holds forT":

P(-T|-Fqg,G) x P(G|-T,—~Fg)P(—Fg|-T)P(—-T)
Normalizing, we obtain

P(T|-Fg,G) =

P(G|T\~Fg)P(~Fg|T)P(T)
P(G|T,=Fg)P(~Fa|T)P(T)+P(G|-T,~Fg)P(~Fc|-T)P(=T)
The “systematic” way to do it is to revert to joint entries {icong that the subgraph

of T, G, and F is completely connected so no loss of efficiency is entailédh have

P(T,~Fg,G) P(T,—Fg,G)
P(G,-Fg)  P(T,G,—Fg)+ P(T,G,~Fg)
Now we use the chain rule formula (Equation 15.1 on page 439%write the joint
entries as CPT entries:
P(T|-Fg,G) =

P(T|-Fg,G) =

P(T)P(~Fa|T)P(G|T,~Fg)
P(T)P(—FGIT)P(GIT,~Fg)+P(=1)P(~F¢[-T)P(GI-T,~Fc)




which of course is the same as the expression arrived at atostting P(7") = p,
P(Fg|T) = g, andP(Fg|—-T) = h, we get

p(l—g)(1 —x)
p(l=g)(A1—z)+ (1 -p)(1-h)z

P(T|-Fg,G) =

2.

(a) Sum the sizes of the conditional probability tables of
P(A), P(B|A), P(C|B), P(D|B), P(E|B), P(F|C, D, E,G), P(G|A):
14+24+24+24+2+16+2=27.

(b) No.
(c) No.

(d) No

(e) Trrelevant variables: E, F, G.
() P(d|c) = P(c,d) x P(c)

P(e,d) = > P(clb)P(d[b)P(b) = Y _ P(c[b) P(d]b) 3 P(bla)P(a)
P(c) = %:P(CIb) >_ P(bla)P(a)

(g) Factors created: Fy(B,G), F2(C, D, E,G), F5(C, D, F,G), F4(C,D,G), F5(C, D).
(h) No.



