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constructed with linear–Gaussian conditional densities is also multivariate Gaussian.
Without loss of generality, we can assume thatXn+1 is a leaf variable added to a net-
work defined in the firstn variables. By the product rule we have

P (x1, . . . , xn, xn+1) = P (xn+1|x1, . . . , xn)P (x1, . . . , xn)
= P (xn+1|parents(Xn+1))P (x1, . . . , xn)

which, by the inductive hypothesis, is the product of a linear Gaussian with a multivari-
ate Gaussian. Extending the argument of part (a), this is in turn a multivariate Gaussian
of one higher dimension.

14.10

a. With multiple continuous parents, we must find a way to map the parent value vector to
a single threshold value. The simplest way to do this is to take a linear combination of
the parent values.

b. For ordered valuesy1 < y2 < · · · < yd, we assume some unobserved continuous
dependent variabley∗ that is normally distributed conditioned on the parent variables,
and define cutpointscj such thatY = yj iff cj−1 ≤ y∗ ≤ cj . The probability of this
event is given by subtracting the cumulative distributionsat the adjacent cutpoints.

The unordered case is not obviously meaningful if we insist that the relationship
between parents and child be mediated by a single, real-valued, normally distributed
variable.

14.11 This question exercises many aspects of the student’s understanding of Bayesian net-
works and uncertainty.

a. A suitable network is shown in Figure S14.2. The key aspectsare: the failure nodes are
parents of the sensor nodes, and the temperature node is a parent of both the gauge and
the gauge failure node. It is exactly this kind of correlation that makes it difficult for
humans to understand what is happening in complex systems with unreliable sensors.

T G A

FG FA

Figure S14.2 A Bayesian network for the nuclear alarm problem.

b. No matter which way the student draws the network, it shouldnot be a polytree because
of the fact that the temperature influences the gauge in two ways.

c. The CPT forG is shown below. Students should pay careful attention to thesemantics
of FG, which is true when the gauge isfaulty, i.e.,not working.
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T =Normal T =High

FG ¬FG FG ¬FG

G=Normal y x 1− y 1− x
G=High 1− y 1− x y x

d. The CPT forA is as follows:

G=Normal G=High

FA ¬FA FA ¬FA

A 0 0 0 1
¬A 1 1 1 0

e. This part actually asks the student to do something usuallydone by Bayesian network
algorithms. The great thing is that doing the calculation without a Bayesian network
makes it easy to see the nature of the calculations that the algorithms are systematizing.
It illustrates the magnitude of the achievement involved increating complete and correct
algorithms.

AbbreviatingT =High andG=High by T andG, the probability of interest here
is P (T |A,¬FG,¬FA). Because the alarm’s behavior is deterministic, we can reason
that if the alarm is working and sounds,G must beHigh. BecauseFA andA are
d-separated fromT , we need only calculateP (T |¬FG, G).

There are several ways to go about doing this. The “opportunistic” way is to notice
that the CPT entries give usP (G|T,¬FG), which suggests using the generalized Bayes’
Rule to switchG andT with ¬FG as background:

P (T |¬FG, G) ∝ P (G|T,¬FG)P (T |¬FG)

We then use Bayes’ Rule again on the last term:

P (T |¬FG, G) ∝ P (G|T,¬FG)P (¬FG|T )P (T )
A similar relationship holds for¬T :

P (¬T |¬FG, G) ∝ P (G|¬T,¬FG)P (¬FG|¬T )P (¬T )
Normalizing, we obtain

P (T |¬FG, G) =
P (G|T,¬FG)P (¬FG|T )P (T )

P (G|T,¬FG)P (¬FG|T )P (T )+P (G|¬T,¬FG)P (¬FG|¬T )P (¬T )

The “systematic” way to do it is to revert to joint entries (noticing that the subgraph
of T ,G, andFG is completely connected so no loss of efficiency is entailed). We have

P (T |¬FG, G) =
P (T,¬FG, G)

P (G,¬FG)
=

P (T,¬FG, G)

P (T,G,¬FG) + P (T,G,¬FG)

Now we use the chain rule formula (Equation 15.1 on page 439) to rewrite the joint
entries as CPT entries:

P (T |¬FG, G) =
P (T )P (¬FG|T )P (G|T,¬FG)

P (T )P (¬FG|T )P (G|T,¬FG)+P (¬T )P (¬FG|¬T )P (G|¬T,¬FG)
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which of course is the same as the expression arrived at above. Letting P (T ) = p,
P (FG|T ) = g, andP (FG|¬T ) = h, we get

P (T |¬FG, G) =
p(1− g)(1 − x)

p(1− g)(1 − x) + (1− p)(1− h)x

14.12

a. Although (i) in some sense depicts the “flow of information”during calculation, it is
clearly incorrect as a network, since it says that given the measurementsM1 andM2,
the number of stars is independent of the focus. (ii) correctly represents the causal
structure: each measurement is influenced by the actual number of stars and the focus,
and the two telescopes are independent of each other. (iii) shows a correct but more
complicated network—the one obtained by ordering the nodesM1, M2, N , F1, F2. If
you orderM2 beforeM1 you would get the same network except with the arrow from
M1 toM2 reversed.

b. (ii) requires fewer parameters and is therefore better than (iii).

c. To computeP(M1|N), we will need to condition onF1 (that is, consider both possible
cases forF1, weighted by their probabilities).

P(M1|N) = P(M1|N,F1)P(F1|N) + P(M1|N,¬F1)P(¬F1|N)

= P(M1|N,F1)P(F1) + P(M1|N,¬F1)P(¬F1)

Let f be the probability that the telescope is out of focus. The exercise states that this
will cause an “undercount of three or more stars,” but ifN = 3 or less the count will
be 0 if the telescope is out of focus. If it is in focus, then we will assume there is a
probability ofe of counting one two few, ande of counting one too many. The rest of
the time(1− 2e), the count will be accurate. Then the table is as follows:

N =1 N =2 N =3

M1 = 0 f + e(1-f) f f
M1 = 1 (1-2e)(1-f) e(1-f) 0.0
M1 = 2 e(1-f) (1-2e)(1-f) e(1-f)
M1 = 3 0.0 e(1-f) (1-2e)(1-f)
M1 = 4 0.0 0.0 e(1-f)

Notice that each column has to add up to 1. Reasonable values for e andf might be
0.05 and 0.002.

d. This question causes a surprising amount of difficulty, so it is important to make sure
students understand the reasoning behind an answer. One approach uses the fact that
it is easy to reason in the forward direction, that is, try each possible number of stars
N and see whether measurementsM1 =1 andM2 =3 are possible. (This is a sort of
mental simulation of the physical process.) An alternativeapproach is to enumerate the
possible focus states and deduce the value ofN for each. Either way, the solutions are
N = 2, 4, or≥ 6.

2.

(a) Sum the sizes of the conditional probability tables of
P (A), P (B|A), P (C|B), P (D|B), P (E|B), P (F |C,D,E,G), P (G|A):
1 + 2 + 2 + 2 + 2 + 16 + 2 = 27.

(b) No.

(c) No.

(d) No.

(e) Irrelevant variables: E,F,G.

(f) P (d|c) = P (c, d)× P (c)

P (c, d) =
∑
b

P (c|b)P (d|b)P (b) =
∑
b

P (c|b)P (d|b)
∑
a

P (b|a)P (a)

P (c) =
∑
b

P (c|b)
∑
a

P (b|a)P (a)

(g) Factors created: F1(B,G), F2(C,D,E,G), F3(C,D, F,G), F4(C,D,G), F5(C,D).

(h) No.
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