- **7.4** In all cases, the question can be resolved easily by referring to the definition of entailment.
 - a. $False \models True$ is true because False has no models and hence entails every sentence AND because True is true in all models and hence is entailed by every sentence.
 - **b**. $True \models False$ is false.
 - **c**. $(A \wedge B) \models (A \Leftrightarrow B)$ is true because the left-hand side has exactly one model that is one of the two models of the right-hand side.
 - **d.** $A \Leftrightarrow B \models A \lor B$ is false because one of the models of $A \Leftrightarrow B$ has both A and B false, which does not satisfy $A \lor B$.
 - **e**. $A \Leftrightarrow B \models \neg A \lor B$ is true because the RHS is $A \Rightarrow B$, one of the conjuncts in the definition of $A \Leftrightarrow B$.
 - **f**. $(A \land B) \Rightarrow C \models (A \Rightarrow C) \lor (B \Rightarrow C)$ is true because the RHS is false only when both disjuncts are false, i.e., when A and B are true and C is false, in which case the LHS is also false. This may seem counterintuitive, and would not hold if \Rightarrow is interpreted as "causes."
 - **g**. $(C \lor (\neg A \land \neg B)) \equiv ((A \Rightarrow C) \land (B \Rightarrow C))$ is true; proof by truth table enumeration, or by application of distributivity (Fig 7.11).
 - **j**. $(A \vee B) \wedge \neg (A \Rightarrow B)$ is satisfiable; model has A and $\neg B$.
 - **k**. $(A \Leftrightarrow B) \land (\neg A \lor B)$ is satisfiable; RHS is entailed by LHS so models are those of $A \Leftrightarrow B$.
- **7.20** The CNF representations are as follows:
 - S1: $(\neg A \lor B \lor E) \land (\neg B \lor A) \land (\neg E \lor A)$.
 - S2: $(\neg E \lor D)$.
 - S3: $(\neg C \lor \neg F \lor \neg B)$.
 - S4: $(\neg E \lor B)$.
 - S5: $(\neg B \lor F)$.
 - S6: $(\neg B \lor C)$.

- **7.12** To prove the conjunction, it suffices to prove each literal separately. To prove $\neg B$, add the negated goal S7: B.
 - Resolve S7 with S5, giving S8: F.
 - Resolve S7 with S6, giving S9: C.
 - Resolve S8 with S3, giving S10: $(\neg C \lor \neg B)$.
 - Resolve S9 with S10, giving S11: $\neg B$.
 - Resolve S7 with S11 giving the empty clause.

To prove $\neg A$, add the negated goal S7: A.

- Resolve S7 with the first clause of S1, giving S8: $(B \vee E)$.
- Resolve S8 with S4, giving S9: B.
- Proceed as above to derive the empty clause.

4.

- (a) not unsatisfiable
- (b) valid
- (c) not valid
- (d) not unsatisfiable
- (e) not unsatisfiable
- (f) not valid
- (g) unsatisfiable