Regression

e Output is a continuous numeric value
e Locally-weighted averaging
e Regression trees
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Local Averaging
e Remember all your data
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Local Averaging
e Remember all your data
e When someone asks a question,
—-find the K nearest old data points
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Local Averaging
e Remember all your data
e When someone asks a question,
—-find the K nearest old data points
—-return the average of the answers associated

with them 1
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K=1
e Tracks data very closely
e Prone to overfitting

e
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Bigger K
e Smoothes out variations in data
e May introduce too much bias
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Locally Weighted Averaging
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Locally Weighted Averaging

e Find all points within distance A from target point

e Average the outputs, weighted according to how far
away they are from the target point

6.034 - Spring « 8



Locally Weighted Averaging

e Find all points within distance A from target point

e Average the outputs, weighted according to how far
away they are from the target point

e Given a target x, with k ranging over neighbors,
» K(x, x)y*
k

) Y K(x, x¥)

y

weighting “kernel”
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Epanechnikov Kernel

e D is Euclidean distance
k\2
K(x, x*) = max(3 (1 _ b, x7) ), O)

)LZ

4

e Many other possible choices of kernel K
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Smoooth

e How should we choose A\?
o If small, then we aren’t averaging many points
- Worse at averaging out noise
— Better at modeling discontinuities
e If big, we are averaging a lot of points
—Good at averaging out noise
—Smears out discontinuities

e Can use cross-validation to choose A

e May be better to let it vary according to local
density of points
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Regression Trees

e Like decision trees, but with real-valued constant
outputs at the leaves
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Regression Trees

e Like decision trees, but with real-valued constant
outputs at the leaves

3.2

no ! !yes

-1.9 2.4

3.2

-1.9

2.4
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Leaf Values

e Assign a leaf node the average of the y values of
the data points that fall there.
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Leaf Values

e Assign a leaf node the average of the y values of
the data points that fall there.

e We' d like to have groups of points in a leaf that
have similar y values (because then the average is
a good representative)
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Variance

e Measure of how much a set of humbers is spread
out
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Variance

e Measure of how much a set of humbers is spread
out

e Mean of m values, z, through z, :
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Variance

e Measure of how much a set of humbers is spread
out

e Mean of m values, z, through z, :

k=1

e \Variance: average squared difference between z’ s
and the mean:

1 m
o’ = Z, - u)’
m_lgl(k iy
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Let’ s Split

D:-2,9,1, 12, -4,
0, 11, 10, -1

02=40.5
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Let’ s Split

0,

D:-2,9,1, 12, -4,

11, 10, -1

02=40.5

9,12,
11,10

_21 9/ 1/
12, -4

o2 =1.67

o2 =48.7

0, 11,
10, -1

0’ =40.67
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Let’ s Split

D:-2,9,1, 12, -4,
0, 11, 10, -
02=40.5
0 0
-2, 1, 9, 12, -2,9, 1, 0, 11,
4,0, -1 11,10 12, -4 10, -1
02=3.7 o2 =1.67 o2 =48.7 o? =40.67

AV(j) = p,0*(D})

+ (1-p;)o?(D;)

JAN

% of D with ;=1

subset of D with fj=1
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Let’ s Split

D:-2,9,1, 12, -4,

0,11, 10, -1
02=40.5
0 0
-2, 1, 9, 12, -2,9, 1, 0, 11,
4,0, -1 11,10 12, -4 10, -1
02=3.7 o2 =1.67 o2 =48.7 o? =40.67

AV = (5/9)*3.7+(4/9)*1.67
= 2.8

AV = (5/9)*48.7+(4/9)*40.67
= 45.13
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Stopping

e Stop when variance at a leaf is small enough
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Stopping

e Stop when variance at a leaf is small enough

e Or when you have fewer than min-leaf elements at
a leaf
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Stopping

e Stop when variance at a leaf is small enough
e Or when you have fewer than min-leaf elements at

a leaf

e Set y at a leaf to be the mean of the y values of the

elements

_21 1/
4,0, -1 -1.2

10.5

9,12,
11,10
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CS 2750 Machine Learning
Lecture 6

Linear regression

Milos Hauskrecht
milos@cs.pitt.edu
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Outline

Linear Regression

Linear model

Loss (error) function based on the least squares fit
Parameter estimation.

Gradient methods.

On-line regression techniques.

Linear additive models

Statistical model of linear regression
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Supervised learning

Data: D={D,,D,,..,D,} asetofnexamples
D, =<X,,Y; >
X; = (Xi1: X% 2:77"Xi4) is an input vector of size d
Y; Isthe desired output (given by a teacher)

Obijective: learn the mapping f : X =Y
st. vi=f(x;) forall i=1..,n

« Regression: Y Is continuous

Example: earnings, product orders — company stock price
« Classification: Y is discrete

Example: handwritten digit in binary form — digit label
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Linear regression

* Function f:X —Y Iisalinear combination of input
components

d
f(X) =Wy + W, X, + W, X, +... Wy Xg =W, + D W, X;
)

Wy, Wy, ... W, - parameters (weights)

Biasterm —— 1

Input vector <
X . Wy
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Linear regression

« Shorter (vector) definition of the model

— Include bias constant in the input vector
X =1 X, X, Xy)

f(X) =W,X, +W, X, +W,X, +...W,X, =W X

Wy, W,,... W, - parameters (weights)
1

Input vector <
X ° Wd
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Linear regression. Error.

Data: D. =<x,,y, >
Function: x. — f(x.)
We would like to have y. ~ f(x;) forall i=1..,n

Error function

— measures how much our predictions deviate from the
desired answers

Mean-squared error  J_ 2% Dy = (X))

i=1,..n

Learning:
We want to find the weights minimizing the error !
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Linear regression. Example

« 1 dimensional input X =(X)

30
25—~
20 -

15

10 - % /
°T T N

0 . — *

5 //-/

104 *

-15

r r r r r r
-1.5 -1 -0.5 (0] 0.5 1 1.5
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Linear regression. Example.

« 2dimensional input X = (X, X,)

20 —
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Linear regression. Optimization.

« \We want the weights minimizing the error

Z(yl_f(x )) T Z(yl —W X)
iI=1,..n iI=1,..n
* Forthe optlmal set of parameters, derivatives of the error with
respect to each parameter must be 0

OW.

J

o 2
—J,(w) = _EZ(Yi —WoXi o =WiXg —...=WyX; 4)X ; =0
=1
» Vector of derivatives:

rad., (3, (W) = V., (3, (W) === 3" (y, ~W'x,)x, =0
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Linear regression. Optimization.

« ograd, (J.(w)) =0 defines a set of equations in w

o, 2

OW, Jn(W):_EZ_ll(yi_WOXi,O_Wlxi,l_“'_WdXi,d):O

0 2

%Jn(w) :_H;(yi —WoXi o _WlXi,l_“'_WdXi,d)Xi,l =0
o 2 &

%j‘]n(W) :_Eiz:l:(Yi —WoX; o —WiXi; —... =Wy X; 4 )% ; =0
o 2 &

ow, Jn (W) :_Eizll(yi —WoXi o —WiXi 1 —... = WyX; 4 )X g =0
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Solving linear regression

9, 2 &
%j J,(w) = _Eiz:;,(Yi —WoXi o Wi Xig —...— W, Xi,d)xi,j =0
By rearranging the terms we get a system of linear equations
with d+1 unknowns

Aw =D

Wozn:xi01+len:xi11+...+w.zn:xij1+...+wdzn:xi,dlzzn:yi1
=1 =1
n n
WZXI()Xll-I—WZXIlXIl-I— W Zx,J Xig oot Wy D XXy =D VX
i=1 i=1

WZXIOXIJ-I—WZXllx +.. -I—WJZXIJIJ+ erde,dxIJ Zy,,J
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Solving linear regression

« The optimal set of weights satisfies:
Vi (3,W) = =23 (v, ~w'x,)x, =0
N =1

Leads to a system of linear equations (SLE) with d+1
unknowns of the form

_ Aw=Db —
WZXIOXIJ-I—WZXllx +. -I—WJZXIJIJ+ -I-WdZXIdXIJ ZY..,

Solution to SLE: ?
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Solving linear regression

« The optimal set of weights satisfies:
Vi (3,W) = =23 (v, ~w'x,)x, =0
N =1

Leads to a system of linear equations (SLE) with d+1
unknowns of the form

_ Aw=Db —
WZXIOXIJ-I—WZXllx +. -I—WJZXIJIJ+ -I-WdZXIdXIJ ZY..,

Solution to SLE:
w=A"Db

e matrix inversion
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Gradient descent solution

Goal: the weight optimization in the linear regression model

%Z(yi — (X, W))°

i=1,..n

J, = Error(w) =

An alternative to SLE solution:

» Gradient descent
Idea:
— Adjust weights in the direction that improves the Error
— The gradient tells us what is the right direction

W <«—Ww—«a V  Error, (w)

o >0 - alearning rate (scales the gradient changes)
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Gradient descent method

» Descend using the gradient information

Error(w) Vv, Error(w) |,

W>—p

Direction of the descent

« Change the value of w according to the gradient
W <«—w-—a V Error,(w)
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Gradient descent method

o
Error(w) ~ Error(w) |,.

W*

* New value of the parameter

o :
W, < W, *—a —— Error(w) | For all
J J w*
OW;
o >0 - alearning rate (scales the gradient changes)
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Gradient descent method

* Iteratively approaches the optimum of the Error function

Error(w)

WONTONVCE W
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Online gradient algorithm

The error function is defined for the whole dataset D

% Sy — f (X, W)’

iI=1,..n

J. = Error(w)=
error for asample D, =<X,V. >

J o nine = ErrOr, (w) =%(yi — f(x,,W))?

online

Online gradient method: changes weights after every sample

O
W; < W; —a—— Error,(w)
- OW.
vector form: j

W <«—w-—a V Error,(w)

a >0 - Learning rate that depends on the number of updates

CS 2750 Machine Learning



Online gradient method

Linear model f(x)=w' x
On-line error J = Error, (w) =— (yI — f (X, W))?

online —

On-line algorithm: generates a sequence of online updates
(I)-th update step with: D, =<x,,y, >
J-th weight:
i i oError, (w
w® —w g o (W) s

J

(i) (i-1) : u
w, —w T +a(i)(y; — O, w )X

1

Fixed learning rate: o(i)=C Annealed learning rate: «afi)~ |

- Use a small constant - Gradually rescales changes

CS 2750 Machine Learning



Online regression algorithm

Online-linear-regression (D, number of iterations)
Initialize weights W = (W,, W, W, ...W,)
for 1I=1:1: number of iterations
do select a data point D, =(x.,y,) fromD
set learning rate  «(i)
update weight vector
W<« W+a(1)(y: — T (X;,w))X.
end for
return weights w

« Advantages: very easy to implement, continuous data streams

CS 2750 Machine Learning




3.5

1.5~

On-line learning. Example

4.5~

5.5

3.5

1.5

0.5

2

CS 2750 Machine Learning



Practical concerns: Input normalization

* Input normalization
— makes the data vary roughly on the same scale.
— Can make a huge difference in on-line learning

Assume on-line update (delta) rule for two weights j,k,:

Wj <= W; +a(l)(y, =T (X )) Change depends on
the magnitude of

w, w0y — F(x ))‘ the input

For inputs with a large magnitude the change in the weight is
huge: changes to the inputs with high magnitude
disproportional as if the input was more important
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Input normalization

* Input normalization:
— Solution to the problem of different scales
— Makes all inputs vary in the same range around 0O

— 1 L 2 1 L _ 2
XF;éxi,j O :n—_lizﬂ:(xi,j_xj)

(Xi,j_)—(j)

O

More complex normalization approach can be applied
when we want to process data with correlations

New input: X ; =

Similarly we can renormalize outputs vy
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Regularized linear regression

 |f the number of parameters is large relative to the number of
data points used to train the model, we face the threat of
overfit (generalization error of the model goes up)

« The prediction accuracy can be often improved by setting
some coefficients to zero
— Increases the bias, reduces the variance of estimates
« Solutions:
— Subset selection
— Ridge regression
— Lasso regression
— Principal component regression

* Next: ridge regression




Ridge regression

Error function for the standard least squares estimates:

‘Jn(W)_ D (i —w'x;)®

—1n

We seek: w _argmm—Z(y, w'X.)?

i=1,..n
Ridge regression
3, (W) == 33 =W x)? + A

i1=1,..n

Wh
WP =YW and 220

What does the new error function do?




Ridge regression

Standard reg ression

‘Jn(W)_ D (i —w'x;)®

i=1,..n

Ridge regression:
Jn<W)— 2y = wIx)? + A|wl,

1=1,..n

[wi, ZW penalizes non-zero weights with the cost
proportional to A (a shrinkage coefficient)

If an input attribute x; has a small effect on improving the error
function 1t is “shut down” by the penalty term

Inclusion of a shrinkage penalty is often referred to as
regularization




Regularized linear regression

How to solve the least squares problem if the error function is
enriched by the regularization term Aw|” ?

Answer: The solution to the optimal set of weights w is obtained
again by solving a set of linear equation.

Standard linear regression:
V., (3, (W) = ——Z(y. ~WIX;)X, =

Solution:  w*=(X"X)XTy

where X is an nxd matrix with rows corresponding to
examples and columns to inputs

Regularized linear regression:
w* = (Al + X" X)* X'y




Lasso regression

« Standard reg ression

Jn (W) = Z(Y. ~W'X;)’

i=1,..n

« Lasso regression/regularlzatlon
J,(w) = Z(y. —W'x;)* + Aw|

1=1,..n
d

= > |w, | penalizes non-zero weights with the cost
=0 proportional to A .

« L1 is more aggressive pushing the weights to 0 compared to L2.




Extensions of simple linear model

Replace inputs to linear units with feature (basis) functions
to model nonlinearities

f(X) =w, +Zw¢ (X)

P, (x) - an arbltrary function of x

¢ (X)
X, i f (X)
X4 . w

The same techniques as before to learn the weights
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Additive linear models

« Models linear in the parameters we want to fit

F(X) =Wy + > Wy, (%)

Wy, W,...W,,, - parameters
#.(X), P, (X)...4,,(X) - feature or basis functions
« Basis functions examples:
— a higher order polynomial, one-dimensional input X = (X,)
() =X ¢,(x)=x @(x)=x
— Multidimensional quadratic X = (X;, X,)
A =% H)=X g(X)=X #,() =% ¢(X)=xX,
— Other types of basis functions
@, (X) =sIn X ¢,(X) =COS X
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Fitting additive linear models

» Error function J,(w)=1/n> (y— f(x,))*

i=1,..n

Assume: o(X;) =@ & (%), 2, (%), ..., P (X;))
Va3, W) == 3y, — F(x)e(x) =0

 Leads to a system of m linear equations

0,216, 06) 440, 4 0 06+ D () (6) = D i ()

 Can be solved exactly like the linear case

CS 2750 Machine Learning



Example. Regression with polynomials.

Regression with polynomials of degree m

« Data points: pairsof <X,y >

« [Feature functions: m feature functions
$(x)=x" i=12,...,m

* Function to learn:

f(x,w)=w, +ZW¢(X) W, +wa
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Learning with feature functions

Function to learn:

f (X, w) =w, +_Zk:Wi¢i (X)

On line gradient update for the <x,y> pair

W, =W, +a(y— f(xX,w))

w; =w; +a(y— f(x,w))g; (X)

Gradient updates are of the same form as in the linear and logistic
regression models
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Example. Regression with polynomials.

Example: Regression with polynomials of degree m
f(OXGW) =W, + D Wi (X) =W, + D wi X!
=1 =1

* On line update for <x,y> pair

W, =W, +a(y— f(X,w))

w, =w; +a(y— f(x,w))x’
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Multidimensional additive model example

20
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Multidimensional additive model example
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Overview of Kernel Methods

Prof Bennett

Math Model of Learnlng and
......................... .I SC@very 2/27 /05

Based on Chapte 2 of
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Linear Regression

Given training data:

S =((X19y1)9(X29y2)9K ><Xi9yi)>K 9(X19y1 ))
points x;, ER" and labels y, ER

& Construct linear function:
g(x) =(W,x) =w'x = zwixi
¢ Creates pattern function:

f(x,y)=y-g(x)=y—-(W,x)=~0
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1-d Regression
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Predict Drug Absorption

¢ Human intestinal cell line CACO-2
¢ Predict permeability yER

& /18 descriptors generated
e Electronic TAE
718
e Shape/Property (PEST) X, ER

e [raditional
& 2/ molecules with tested permeabillity

| =28



Least Squares Approximation
¢ Want g(x) =y

& Define error f(x,9)=y-g(x) =&

& Minimize loss 1
L(g,s)=L(w,S)= > (v, -g(x,))

3¢ Z“



e e ] ]
Optimal Solution

s Want:  y=XWw
¢ Mathematical Model:
min , L(w,S) = Hy—XwH2 = (y—XW)'(y—Xw)
¢ Optimality Condition:
dL(w,S)
JW

=-2X'y+2X'Xw =0

& Solution satisfies: X'Xw=X'y

Solving nxn equation is 0(n?)



Solution

¢ Assume (X'X)" exists, then

X'Xw=X'y = w=(X'X)" X'y
& Alternative Representation:

- (X'X)" X'y=X'X(X'X)" (X'X)" X'y
- X'(X(X'X)" X'y) = X'«
where a = X(X' X) X'y, w= El_ iXi

Is this a good assumption?
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Ridge Regression

& Inverse typically does not exist.
& Use least norm solution for fixed4 > 0.
¢ Regularized problem
min_, L, (w,S) = AHWHz +y - XWH2
¢ Optimality Condition:
oL, (w,S)
dW

(X'X + AL )W =X'y Requires 0(n’) operations

=2w-2X"y+2X'Xw =0




Ridge Regression (cont)

& Inverse always exists for any A > 0.
w=(X'X+AI)" X'y
& Alternative representation:
(X'X+A)w=X'y=w=21"(X"y-X'Xw)
=W = ﬂ‘lX'(y —XW) =X'a

a=21"(y-Xw)
=>/'L(l=(y—XW)=(y_XX'u)
= XX'o0+Aa =y Solving Ix/ equation is 0(/°)

= 0=(G+AL )y where G =XX'
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Dual Ridge Regression

& [0 predict new point:

g(x) = (W,x) = <2aixi,x> =y'(G +/II)_1 //

where z= <xl.,x>

& Note need only compute G, the Gram
Matrix G=XX' G, =(x.x,)

y

Ridge Regression requires only
inner products between data points
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Efficiency

¢ 1o compute
w In primal ridge regression is o(n3)
o. In primal ridge regression is o(?)
¢ To predict new point x
primal g(x)=<W,X>=ZWi(X)i 0(n)
dua g<><><2>z(§:<><>) o

J

Dual is better if n>>/
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Notes on Ridge Regression

¢ Regularization” is key to address
stability and regularization.

¢ Regularization lets method work when
n>>/.

& Dual more efficient when n>>/.

& Dual only requires inner products of
data.
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Linear Regression in Feature
Space

Key ldea:

Map data to higher dimensional space
(feature space) and perform linear
regression in embedded space.

Embedding Map:
$:XER" - FCR" N>>n



Nonlinear Regression in
Feature Space

[]

X = [a,b] = e
<X,W> = w,a + w,b
\’

O(x) = [az,bz,\/zab]
g(x) =(0(x),w)

2 2
= wa +w,b"w, +w,~2ab



Nonlinear Regression in
Feature Space

B
g(x) = (p(x). W)
= 2 o, { P(X), p(X,))

1
= 121 o, K(x,X,)
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Kernel Function

& A kernel is a function K such that
K (x,u) = (¢(x),p(u)),
where ¢ 1s a mapping from input space
to feature space F.

& There are many possible kernels.

Simplest is linear kernel.
K(x,u> = <x,u>



Derivation of Kernel

(p(u), p(V))
— <(u129 l/l22 > V 2”1”2)9 (v129 V22, ' 2V1V2)>
— u12v12 -+ u22V22 —+ 2u1u2v1v2

2
= (ulvl + U5V, )

— (u.v)’

Thus: K(a,v) = <u, V>2



Ridge Regression
iIn Feature Space

& [0 predict new point:
g(p(x)) = (W, ¢(x)) <2a¢(x ), ¢(X)> y' (G+A1) z

where z = <¢(xi),¢(x)>

¢ To compute the Gram Matrix
G=pX)pX)' G, =(d(x,),4(x))) = K(x,,x,)

Use kernel to compute inner product



Popular Kernels based on

vectors
By Hilbert-Schmidt Kernels (Courant and Hilbert 1953)

(Ow),0(v)) = K(u,v)
for certain {¥] and K, e.g.

6(u) K(u,v)
Degree d polynomial (u,v)+1)°

2
Radial Basis Function Machine exp ( — [u—v] )
o

Two Layer Neural Network  sigmoid (n{u,v) + ¢)
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Kernels Intuition

& Kernels encode the notion of similarity
to be used for a specific applications.

e Document use cosine of “bags of text”.
e Gene sequences can used edit distance.

¢ Similarity defines distance:
Ju=v|’=@-v)'(u-v)=(uu)-2(u,v)+(v,v)

& [rick is to get right encoding for domain.
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Important Points

¢ Kernel method =

linear method + embedding in feature
space.

& Kernel functions used to do embedding
efficiently.

& Feature space is higher dimensional
space so must regularize.

¢ Choose kernel appropriate to domain.
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