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Feature Spaces 

• Features can be much more complex 

• Drawn from bigger discrete set 
• If set is unordered (4 different makes of cars, for 

example), use binary attributes to encode the 
values (1000, 0100, 0010, 0001) 

• If set is ordered, treat as real-valued 

• Real-valued: bias that inputs whose features have 
“nearby” values ought to have “nearby” outputs 
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Predicting Bankruptcy 

L   R        B 
3    0.2    No 
1    0.3    No 
4    0.5    No 
2    0.7    No 
0    1.0    No 
1    1.2    No 
1    1.7    No 
6    0.2    Yes 
7    0.3    Yes 
6    0.7    Yes 
3    1.1    Yes 
2    1.5    Yes 
4    1.7    Yes 
2    1.9    Yes 

L: #late payments / year 
R: expenses / income 
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Love thy Nearest Neighbor 
• Remember all your data 
• When someone asks a question, 

– find the nearest old data point 
– return the answer associated with it 

? 



6.034 - Spring 03  • 8 

What do we mean by “Nearest”? 

• Need a distance function on inputs 
• Typically use Euclidean distance (length of a 

straight line between the points) 

    

! 

D(xi, xk) = (xj
i " xj

k)2

j

#
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What do we mean by “Nearest”? 

• Need a distance function on inputs 
• Typically use Euclidean distance (length of a 

straight line between the points) 

• Distance between character strings might be 
number of edits required to turn one into the other 

    

! 

D(xi, xk) = (xj
i " xj

k)2

j

#
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Scaling 

• What if we’re trying to predict a car’s gas mileage? 
• f1 = weight in pounds 
• f2 = number of cylinders 

• Any effect of f2 will be completely lost because of 
the relative scales 

• So, re-scale the inputs to have mean 0 and 
variance 1: 

x

xx
x

!
"

=#
average 

standard deviation 
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Scaling 

• What if we’re trying to predict a car’s gas mileage? 
• f1 = weight in pounds 
• f2 = number of cylinders 

• Any effect of f2 will be completely lost because of 
the relative scales 

• So, re-scale the inputs to have mean 0 and 
variance 1: 

• Or, build knowledge in by scaling features 
differently 
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Scaling 

• What if we’re trying to predict a car’s gas mileage? 
• f1 = weight in pounds 
• f2 = number of cylinders 

• Any effect of f2 will be completely lost because of 
the relative scales 

• So, re-scale the inputs to have mean 0 and 
variance 1: 

• Or, build knowledge in by scaling features 
differently 

• Or use cross-validation to choose scales 

x

xx
x

!
"

=#
average 

standard deviation 
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Predicting Bankruptcy 
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Time and Space 

• Learning is fast 
• Lookup takes about m*n computations 

• storing data in a clever data structure (KD-tree) 
reduces this, on average, to log(m)*n 

• Memory can fill up with all that data 
• delete points that are far away from the 

boundary 
 



6.034 - Spring 03  • 30 

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

Noise 



6.034 - Spring 03  • 31 

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

Noise 



6.034 - Spring 03  • 32 

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

Noise 



6.034 - Spring 03  • 33 

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

k-Nearest Neighbor 

•  Find the k nearest points  



6.034 - Spring 03  • 34 

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

k-Nearest Neighbor 

•  Find the k nearest points  
•  Predict output according to the majority  



6.034 - Spring 03  • 35 

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

k-Nearest Neighbor 

•  Find the k nearest points  
•  Predict output according to the majority  
•  Choose k using cross-validation  
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Curse of Dimensionality 

• Nearest neighbor is great in low dimensions (up to 
about 6) 

• As n increases, things get weird: 
• In high dimensions, almost all points are far 

away from one another 
• They’re almost all near the boundaries 

• Imagine sprinkling data points uniformly within a 
10-dimensional unit cube 

• To capture 10% of the points, you’d need a cube 
with sides of length .63! 

• Cure:  feature selection or more global models 
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Test Domains 
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Test Domains 

• Heart Disease: predict whether a person has 
significant narrowing of the arteries, based on tests 

• 26 features 
• 297 data points 
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Test Domains 

• Heart Disease: predict whether a person has 
significant narrowing of the arteries, based on tests 

• 26 features 
• 297 data points 

• Auto MPG: predict whether a car gets more than 22 
miles per gallon, based on attributes of car 

• 12 features 
• 385 data points 
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Heart Disease 

• Relatively insensitive to k 
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Heart Disease 

• Relatively insensitive to k 
• Normalization matters! 
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Auto MPG 

• Relatively insensitive to k 
• Normalization doesn’t matter much 
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Auto MPG 

• Now normalization matters a lot! 
• Watch the scales on your graphs 
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Remember Decision Trees 
Use all the data to build a tree of questions with 

answers at the leaves 

precip 

clothes 

temp > 90? weekend? 

drive 

walk 

none 
rain 

snow 

formal casual 

yes 

no 

yes 

yes 

no no 

drive 

drive drive walk walk 

shop? 



6.034 - Spring 03  • 48 

Numerical Attributes 

• Tests in nodes can be of the form xj > constant 
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Numerical Attributes 

• Tests in nodes can be of the form xj > constant 
• Divides the space into axis-aligned rectangles 

f1 > 2 

1 

no yes 

1 

2 f1 

f2 
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Numerical Attributes 

• Tests in nodes can be of the form xj > constant 
• Divides the space into axis-aligned rectangles 

 

f1 > 2 

f2 > 4 1 

0 1 

no 

yes 

yes 

no 

1 

1 

0 

4 

2 f1 

f2 
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Numerical Attributes 

• Tests in nodes can be of the form xj > constant 
• Divides the space into axis-aligned rectangles 

• Non-axis aligned hypotheses can be smaller but 
hard to find 

 

f1 > 2 

f2 > 4 1 

0 1 

no 

yes 

yes 

no 

1 

1 

0 

4 

2 f1 

f2 
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• Consider a split between each point in each 
dimension 
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Considering Splits 

• Choose split that minimizes average entropy of 
child nodes 

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes



6.034 - Spring 03  • 57 

Bankruptcy Example 

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

L<y NL PL NR PR AE 

6.5 7 6 0 1 0.93 

5.0 7 4 0 3 0.74 

3.5 6 3 1 4 0.85 

2.5 5 2 2 5 0.86 

1.5 4 0 3 7 0.63 

0.5 1 0 6 7 0.93 

#
 neg to left 

#
 neg to right 

#
 pos to left 

#
 pos to right 

AE 1.00 1.00 0.98 0.98 0.94 0.98 0.92 0.98 0.92 

R<x 0.25 0.40 0.60 0.85 1.05 1.15 1.35 1.60 1.80 
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Bankruptcy Example 
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R
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Yes

L<y NL PL NR PR AE 

6.5 7 6 0 1 0.93 

5.0 7 4 0 3 0.74 

3.5 6 3 1 4 0.85 

2.5 5 2 2 5 0.86 

1.5 4 0 3 7 0.63 

0.5 1 0 6 7 0.93 

AE 1.00 1.00 0.98 0.98 0.94 0.98 0.92 0.98 0.92 

R<x 0.25 0.40 0.60 0.85 1.05 1.15 1.35 1.60 1.80 
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Bankruptcy Example 

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

L<y NL PL NR PR AE 

6.5 7 6 0 1 0.93 

5.0 7 4 0 3 0.74 

3.5 6 3 1 4 0.85 

2.5 5 2 2 5 0.86 

1.5 4 0 3 7 0.63 

0.5 1 0 6 7 0.93 

AE 1.00 1.00 0.98 0.98 0.94 0.98 0.92 0.98 0.92 

R<x 0.25 0.40 0.60 0.85 1.05 1.15 1.35 1.60 1.80 ?? 0 

no yes 
L > 1.5 
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Bankruptcy Example 

?? 0 

no yes 
L > 1.5 

AE 0.85 0.88 0.79 0.60 0.69 0.76 0.83 

R<x 0.25 0.40 0.60 0.90 1.30 1.60 1.80 

L<y NL PL NR PR AE 

6.5 6 3 0 1 0.83 

5.0 4 3 0 3 0.69 

3.5 3 2 4 1 0.85 

2.5 2 1 5 2 0.88 
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Bankruptcy Example 

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

R > 0.9 0 
no 

yes 
L > 1.5 

L<y NL PL NR PR AE 

6.5 6 3 0 1 0.83 

5.0 4 3 0 3 0.69 

3.5 3 2 4 1 0.85 

2.5 2 1 5 2 0.88 

AD 0.85 0.88 0.79 0.60 0.69 0.76 0.83 

R<x 0.25 0.40 0.60 0.90 1.30 1.60 1.80 
1 

yes 

?? 
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Bankruptcy Example 

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

R > 0.9 0 
no 

yes 
L > 1.5 

1 

yes 

?? 

L<y NL PL NR PR AE 

6.5 3 2 0 1 0.81 

5.0 3 0 0 3 0.00 

3.5 2 0 1 3 0.54 

2.5 1 0 2 3 0.81 

AE 1.00 0.92 1.00 

R<x 0.25 0.40 0.60 
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Bankruptcy Example 

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

R > 0.9 0 
no 

yes 
L > 1.5 

1 

yes 

L>5.0 

L<y NL PL NR PR AE 

6.5 3 2 0 1 0.81 

5.0 3 0 0 3 0.00 

3.5 2 0 1 3 0.54 

2.5 1 0 2 3 0.81 

AE 1.00 0.92 1.00 

R<x 0.25 0.40 0.60 no yes 
0 1 
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Bankruptcy Example 

0
1
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3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

R > 0.9 0 
no 

yes 
L > 1.5 

1 

yes 

L>5.0 
no yes 
0 1 
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Heart Disease 

• Best performance (.77) slightly worse than nearest 
neighbor (.81) 
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Heart Disease 

yes 
thal = 1 

thal  = 1: normal exercise thallium scintigraphy test 

no 
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Heart Disease 

yes 
thal = 1 

thal  = 1: normal exercise thallium scintigraphy test 
ca = 0: no vessels colored by fluoroscopy 

no 

ca = 0 
yes no 
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Heart Disease 

yes 
thal = 1 

thal  = 1: normal exercise thallium scintigraphy test 
ca = 0: no vessels colored by fluoroscopy 

no 

ca = 0 

1 

yes no 
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Heart Disease 

yes 
thal = 1 

0 1 

thal  = 1: normal exercise thallium scintigraphy test 
ca = 0: no vessels colored by fluoroscopy 
exang: exercise induced angina 

no 

ca = 0 

exang 1 

yes no 



6.034 - Spring 03  • 70 

Heart Disease 

ca=0 

yes 
thal = 1 

0 1 

thal  = 1: normal exercise thallium scintigraphy test 
ca = 0: no vessels colored by fluoroscopy 
exang: exercise induced angina 

no 

ca = 0 

exang 1 

yes no yes no 
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Heart Disease 

ca=0 

yes 
thal = 1 

0 1 

thal  = 1: normal exercise thallium scintigraphy test 
ca = 0: no vessels colored by fluoroscopy 
exang: exercise induced angina 

no 

ca = 0 

exang chest-pain  1 

0 1 

yes no yes no 
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Heart Disease 

ca=0 

0 

yes 
thal = 1 

0 1 

thal  = 1: normal exercise thallium scintigraphy test 
ca = 0: no vessels colored by fluoroscopy 
exang: exercise induced angina 

no 

ca = 0 

exang age < 57.5 chest-pain  1 

0 1 

yes no yes no 
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Heart Disease 

ca=0 

0 

yes 
thal = 1 

0 1 

thal  = 1: normal exercise thallium scintigraphy test 
ca = 0: no vessels colored by fluoroscopy 
exang: exercise induced angina 
oldpk: feature of cardiogram 

no 

ca = 0 

exang age < 57.5 chest-pain  1 

0 1 oldpk<3.2 

0 1 

yes no yes no 
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Auto MPG 

• Performance (.91) essentially the same as nearest 
neighbor 
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More than 22 MPG? 

0 

displacement > 189.5 

0 

1 

weight > 2224.5 

year > 78.5 1 

1 

weight > 2775 
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Bankruptcy Example 
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1-Nearest Neighbor Hypothesis 
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Decision Tree Hypothesis 

R > 0.9 0 
no 

yes 
L > 1.5 

1 

yes 

L>5.0 
no yes 
0 1 
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Linear Hypothesis 
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Linearly Separable 
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Not Linearly Separable 
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Not Linearly Separable 
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Not Linearly Separable 
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Linear Hypothesis Class 

• Equation of a hyperplane in the feature space 

• w, b are to be learned 
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Linear Hypothesis Class 

• Equation of a hyperplane in the feature space 

• w, b are to be learned 
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Linear Hypothesis Class 

• Equation of a hyperplane in the feature space 

• w, b are to be learned 

 
• A useful trick: let x0=1 and w0=b 

0=+! bxw

!
=

=+
n

j
jj bxw

1
0

0=! xw

!
=

=
n

j
jjxw

0
0

x1 

x2 

w=[w1 w2] 

w/b!
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Hyperplane: Geometry 

x1 

x2 

b!

ŵ

x

unit 
normal 

offset 
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Hyperplane: Geometry 

x1 

x2 

b!

ŵ

xxw !ˆ

b+! xŵ
signed perpendicular 
distance of point x to 
hyperplane. 

recall:  !cosbaba ="

!
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Hyperplane: Geometry 

x1 

x2 

b!

ŵ

xxw !ˆ

b+! xŵ
signed perpendicular 
distance of point x to 
hyperplane. 

recall:  !cosbaba ="

perp 
distance is 

positive 

perp 
distance is 
negative !

perp 
distance is 

zero 
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Linear Classifier 

x1 

x2 

w

x

)()()( xwxwx !"+!= signbsignh

outputs +1 or -1 
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Linear Classifier 

x1 

x2 

w

ix

iiii
i yby xwxw !"+!" )(#

proportional to 
perpendicular distance of 
point xi to hyperplane. 

γi > 0 : point is correctly 
classified (sign of distance = yi) 

yk = -1 
γi < 0 : point is incorrectly 
classified (sign of distance ≠ yi) 

yi = +1 

kx

i!

k!

Margin: 
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Perceptron Algorithm 
Rosenblatt, 1956 

• Pick initial weight vector (including b), e.g. [0 … 0] 
• Repeat until all points correctly classified 

• Repeat for each point 
– Calculate margin (         ) for point i 
– If margin > 0, point is correctly classified 
– Else change weights to increase margin; 

change in weight proportional to  

iiy xw

iiy x
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Perceptron Algorithm 
Rosenblatt, 1956 

• Pick initial weight vector (including b), e.g. [0 … 0] 
• Repeat until all points correctly classified 

• Repeat for each point 
– Calculate margin (         ) for point i 
– If margin > 0, point is correctly classified 
– Else change weights to increase margin; 

change in weight proportional to  

iiy xw

iiy x

•  Note that, if yi = 1 
if xj

i > 0 then wj increased (increases margin) 
if xj

i < 0 then wj decreased (increases margin) 
•  And, similarly for yi = -1 
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Perceptron Algorithm 
Rosenblatt, 1956 

• Pick initial weight vector (including b), e.g. [0 … 0] 
• Repeat until all points correctly classified 

• Repeat for each point 
– Calculate margin (         ) for point i 
– If margin > 0, point is correctly classified 
– Else change weights to increase margin; 

change in weight proportional to  

iiy xw

iiy x

•  Note that, if yi = 1 
if xj

i > 0 then wj increased (increases margin) 
if xj

i < 0 then wj decreased (increases margin) 
•  And, similarly for yi = -1 
•  Guaranteed to find separating hyperplane if one exists 
•  Otherwise, data are not linearly separable, loops forever 
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Perceptron Algorithm 
Bankruptcy Data 

Final Answer: 
 w=[-2.2 0.94 0.4] 

Initial Guess: 
 w=[0.0 0.0 0.0] 

rate η = 0.1 
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Gradient Ascent 

• Why pick        as increment to weights? 
• To maximize scalar function of one variable f(w) 

• Pick initial w 
• Change w to w + η df/dw   (η > 0, small) 
• until f stops changing (df/dw   0) 

iiy x

f 

w 

df/dw > 0 
slope 

df/dw= 0 
local extremum 

η df/dw 

! 

"
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Gradient Ascent/Descent 

• To maximize f(w) 
• Pick initial w 
• Change w to w + η ∇wf   (η > 0, small) 
• until f stops changing (∇wf ≈ 0) 

• Finds local maximum; global maximum if function is 
globally convex. 

!
"

#
$
%

&

'

'

'

'
=(

nw
f

w
ff ,,
1

…w
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Gradient Ascent/Descent 

• To maximize f(w) 
• Pick initial w 
• Change w to w + η ∇wf   (η > 0, small) 
• until f stops changing (∇wf ≈ 0) 

• Finds local maximum; global maximum if function is 
globally convex 

• Rate (η) has to be chosen carefully. 
• Too small –  

slow convergence 
• Too big –  

oscillation 

!
"

#
$
%

&

'

'

'

'
=(

nw
f

w
ff ,,
1

…w

f 

w 
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Perceptron Training 
via Gradient Descent 

• Maximize sum of margins of misclassified points 

!=
iedmisclassif 

)(
i

iiyf xww

!="
iedmisclassif i

iiyf xw
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Perceptron Training 
via Gradient Descent 

• Maximize sum of margins of misclassified points 

!=
iedmisclassif 

)(
i

iiyf xww

•  Off-line training: Compute gradient as sum over all 
training points. 

•  On-line training: Approximate gradient by one of 
the terms in the sum:  

!="
iedmisclassif i

iiyf xw

iiy x
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Perceptron Algorithm 
Bankruptcy Data 

  w0   w1   w2 
-1.0 1.00 1.0 
-1.3 0.71 0.6 
-1.4 0.66 0.5 
-1.4 0.66 0.8 
-1.5 0.61 0.7 
-1.6 0.56 0.6 
-1.6 0.65 0.6 
-1.6 0.74 0.6 
-1.6 0.83 0.6 
-1.7 0.81 0.3 

Initial Guess: 
 w=[-1.0 1.0 1.0] 

Final Answer: 
 w=[-1.7 0.81 0.3] 

rate η = 0.1 
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Perceptron Algorithm 
Bankruptcy Data 

rate η = 0.1 

-9x(0.2 3) -4x(0.5 4) 

-1x(0.7 2) -1x(1.7 1) 

5x(0.2 6) 3x(1.1 3) 

Initial Guess: 
 w=[-1.0 1.0 1.0] 

Final Answer: 
 w=[-1.7 0.81 0.3] 

 5 x (1.0 0.2  6.0) 
 3 x (1.0 1.1  3.0) 
-9 x (1.0 0.2  3.0) 
-1 x (1.0 0.7  2.0) 
-4 x (1.0 0.5  4.0) 
-1 x (1.0 1.7  1.0) 

  (-7.0 -1.9 -7.0) 

  x  0.1 = 
  (-0.7 -0.19 -0.7) 
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Dual Form 

 5 x (1.0 0.2  6.0) 
 3 x (1.0 1.1  3.0) 
-9 x (1.0 0.2  3.0) 
-1 x (1.0 0.7  2.0) 
-4 x (1.0 0.5  4.0) 
-1 x (1.0 1.7  1.0) 

  (-7.0 -1.9 -7.0) x  0.1 
= 
  (-0.7 -0.19 -0.7) 

111111

888

777

444

333

11

x
x
x
x
x
x1

y
y
y
y
y
y

!

!

!

!

!

!

!
=

=
m

i
iiiy

1
xw "#

Assume initial weights are 0;     rate=η>0 

αi is count of 
mistakes on point 
i during training 
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Dual Form 

 5 x (1.0 0.2  6.0) 
 3 x (1.0 1.1  3.0) 
-9 x (1.0 0.2  3.0) 
-1 x (1.0 0.7  2.0) 
-4 x (1.0 0.5  4.0) 
-1 x (1.0 1.7  1.0) 

  (-7.0 -1.9 -7.0) x  0.1 
= 
  (-0.7 -0.19 -0.7) 

      

! 

"1y
1x 1

"3y
3x 3

"4y
4x 4

"7y
7x 7

"8y
8x 8

"11y
11x 11

!
=

=
m

i
iiiy

1
xw "#

Assume initial weights are 0;     rate=η>0 

αi is count of 
mistakes on point 
i during training 

      

! 

h(x) = sign(w " x ) = sign( # iy
ix i " x 

i=1

m

$ )

η just scales 
answer, set to 1 
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Perceptron Training 
Dual Form 

•  α = 0 
• Repeat until all points correctly classified 

• Repeat for each point i 
– Calculate margin  

– If margin > 0, point is correctly classified 
– Else increment αi 

• Return  

• If data is not linearly separable, the αi grow without 
bound 

      

! 

" jy
jx j # x i

j=1

m

$

      

! 

w = " j
j=1

m

# y jx j


