
6.034 - Spring 03 • 1

Feature Spaces

• Features can be much more complex

6.034 - Spring 03 • 2

Feature Spaces

• Features can be much more complex

• Drawn from bigger discrete set

6.034 - Spring 03 • 3

Feature Spaces

• Features can be much more complex

• Drawn from bigger discrete set
• If set is unordered (4 different makes of cars, for

example), use binary attributes to encode the
values (1000, 0100, 0010, 0001)

6.034 - Spring 03 • 4

Feature Spaces

• Features can be much more complex

• Drawn from bigger discrete set
• If set is unordered (4 different makes of cars, for

example), use binary attributes to encode the
values (1000, 0100, 0010, 0001)

• If set is ordered, treat as real-valued

6.034 - Spring 03 • 5

Feature Spaces

• Features can be much more complex

• Drawn from bigger discrete set
• If set is unordered (4 different makes of cars, for

example), use binary attributes to encode the
values (1000, 0100, 0010, 0001)

• If set is ordered, treat as real-valued

• Real-valued: bias that inputs whose features have
“nearby” values ought to have “nearby” outputs

6.034 - Spring 03 • 6

Predicting Bankruptcy

L R B
3 0.2 No
1 0.3 No
4 0.5 No
2 0.7 No
0 1.0 No
1 1.2 No
1 1.7 No
6 0.2 Yes
7 0.3 Yes
6 0.7 Yes
3 1.1 Yes
2 1.5 Yes
4 1.7 Yes
2 1.9 Yes

L: #late payments / year
R: expenses / income

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

6.034 - Spring 03 • 7

Love thy Nearest Neighbor
• Remember all your data
• When someone asks a question,

– find the nearest old data point
– return the answer associated with it

?

6.034 - Spring 03 • 8

What do we mean by “Nearest”?

• Need a distance function on inputs
• Typically use Euclidean distance (length of a

straight line between the points)

!

D(xi, xk) = (xj
i " xj

k)2

j

#

6.034 - Spring 03 • 9

What do we mean by “Nearest”?

• Need a distance function on inputs
• Typically use Euclidean distance (length of a

straight line between the points)

• Distance between character strings might be
number of edits required to turn one into the other

!

D(xi, xk) = (xj
i " xj

k)2

j

#

6.034 - Spring 03 • 10

Scaling

• What if we’re trying to predict a car’s gas mileage?
• f1 = weight in pounds
• f2 = number of cylinders

6.034 - Spring 03 • 11

Scaling

• What if we’re trying to predict a car’s gas mileage?
• f1 = weight in pounds
• f2 = number of cylinders

• Any effect of f2 will be completely lost because of
the relative scales

6.034 - Spring 03 • 12

Scaling

• What if we’re trying to predict a car’s gas mileage?
• f1 = weight in pounds
• f2 = number of cylinders

• Any effect of f2 will be completely lost because of
the relative scales

• So, re-scale the inputs

6.034 - Spring 03 • 13

Scaling

• What if we’re trying to predict a car’s gas mileage?
• f1 = weight in pounds
• f2 = number of cylinders

• Any effect of f2 will be completely lost because of
the relative scales

• So, re-scale the inputs to have mean 0 and
variance 1:

x

xx
x

!
"

=#
average

standard deviation

6.034 - Spring 03 • 14

Scaling

• What if we’re trying to predict a car’s gas mileage?
• f1 = weight in pounds
• f2 = number of cylinders

• Any effect of f2 will be completely lost because of
the relative scales

• So, re-scale the inputs to have mean 0 and
variance 1:

• Or, build knowledge in by scaling features
differently

x

xx
x

!
"

=#
average

standard deviation

6.034 - Spring 03 • 15

Scaling

• What if we’re trying to predict a car’s gas mileage?
• f1 = weight in pounds
• f2 = number of cylinders

• Any effect of f2 will be completely lost because of
the relative scales

• So, re-scale the inputs to have mean 0 and
variance 1:

• Or, build knowledge in by scaling features
differently

• Or use cross-validation to choose scales

x

xx
x

!
"

=#
average

standard deviation

6.034 - Spring 03 • 16

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

Predicting Bankruptcy

!

D(xi, xk) = (Li " Lk)2 + (5Ri " 5Rk)2

j

#

6.034 - Spring 03 • 17

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

Predicting Bankruptcy

!

D(xi, xk) = (Li " Lk)2 + (5Ri " 5Rk)2

j

#

6.034 - Spring 03 • 18

Predicting Bankruptcy

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

!

D(xi, xk) = (Li " Lk)2 + (5Ri " 5Rk)2

j

#

6.034 - Spring 03 • 19

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

Predicting Bankruptcy

!

D(xi, xk) = (Li " Lk)2 + (5Ri " 5Rk)2

j

#

6.034 - Spring 03 • 20

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

Predicting Bankruptcy

!

D(xi, xk) = (Li " Lk)2 + (5Ri " 5Rk)2

j

#

6.034 - Spring 03 • 21

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

Predicting Bankruptcy

!

D(xi, xk) = (Li " Lk)2 + (5Ri " 5Rk)2

j

#

6.034 - Spring 03 • 22

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

Predicting Bankruptcy

!

D(xi, xk) = (Li " Lk)2 + (5Ri " 5Rk)2

j

#

6.034 - Spring 03 • 23

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

Hypothesis

!

D(xi, xk) = (Li " Lk)2 + (5Ri " 5Rk)2

j

#

6.034 - Spring 03 • 24

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

Hypothesis

!

D(xi, xk) = (Li " Lk)2 + (5Ri " 5Rk)2

j

#

6.034 - Spring 03 • 25

Time and Space

• Learning is fast

6.034 - Spring 03 • 26

Time and Space

• Learning is fast
• Lookup takes about m*n computations

6.034 - Spring 03 • 27

Time and Space

• Learning is fast
• Lookup takes about m*n computations

• storing data in a clever data structure (KD-tree)
reduces this, on average, to log(m)*n

6.034 - Spring 03 • 28

Time and Space

• Learning is fast
• Lookup takes about m*n computations

• storing data in a clever data structure (KD-tree)
reduces this, on average, to log(m)*n

• Memory can fill up with all that data

6.034 - Spring 03 • 29

Time and Space

• Learning is fast
• Lookup takes about m*n computations

• storing data in a clever data structure (KD-tree)
reduces this, on average, to log(m)*n

• Memory can fill up with all that data
• delete points that are far away from the

boundary

6.034 - Spring 03 • 30

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

Noise

6.034 - Spring 03 • 31

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

Noise

6.034 - Spring 03 • 32

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

Noise

6.034 - Spring 03 • 33

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

k-Nearest Neighbor

•  Find the k nearest points

6.034 - Spring 03 • 34

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

k-Nearest Neighbor

•  Find the k nearest points
•  Predict output according to the majority

6.034 - Spring 03 • 35

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

k-Nearest Neighbor

•  Find the k nearest points
•  Predict output according to the majority
•  Choose k using cross-validation

6.034 - Spring 03 • 36

Curse of Dimensionality

• Nearest neighbor is great in low dimensions (up to
about 6)

• As n increases, things get weird:

6.034 - Spring 03 • 37

Curse of Dimensionality

• Nearest neighbor is great in low dimensions (up to
about 6)

• As n increases, things get weird:
• In high dimensions, almost all points are far

away from one another
• They’re almost all near the boundaries

6.034 - Spring 03 • 38

Curse of Dimensionality

• Nearest neighbor is great in low dimensions (up to
about 6)

• As n increases, things get weird:
• In high dimensions, almost all points are far

away from one another
• They’re almost all near the boundaries

• Imagine sprinkling data points uniformly within a
10-dimensional unit cube

• To capture 10% of the points, you’d need a cube
with sides of length .63!

6.034 - Spring 03 • 39

Curse of Dimensionality

• Nearest neighbor is great in low dimensions (up to
about 6)

• As n increases, things get weird:
• In high dimensions, almost all points are far

away from one another
• They’re almost all near the boundaries

• Imagine sprinkling data points uniformly within a
10-dimensional unit cube

• To capture 10% of the points, you’d need a cube
with sides of length .63!

• Cure: feature selection or more global models

6.034 - Spring 03 • 40

Test Domains

6.034 - Spring 03 • 41

Test Domains

• Heart Disease: predict whether a person has
significant narrowing of the arteries, based on tests

• 26 features
• 297 data points

6.034 - Spring 03 • 42

Test Domains

• Heart Disease: predict whether a person has
significant narrowing of the arteries, based on tests

• 26 features
• 297 data points

• Auto MPG: predict whether a car gets more than 22
miles per gallon, based on attributes of car

• 12 features
• 385 data points

6.034 - Spring 03 • 43

Heart Disease

• Relatively insensitive to k

0

0.2

0.4

0.6

0.8

1

0 20 40

k

cv
 a

cc
u

ra
cy

Raw

6.034 - Spring 03 • 44

Heart Disease

• Relatively insensitive to k
• Normalization matters!

0

0.2

0.4

0.6

0.8

1

0 20 40

k

cv
 a

cc
u

ra
cy

Raw
Normalized

6.034 - Spring 03 • 45

Auto MPG

• Relatively insensitive to k
• Normalization doesn’t matter much

0

0.2

0.4

0.6

0.8

1

0 20 40

k

cv
 a

cc
u

ra
cy

Raw
Normalized

6.034 - Spring 03 • 46

Auto MPG

• Now normalization matters a lot!
• Watch the scales on your graphs

0.85

0.87

0.89

0.91

0.93

0.95

0 20 40

k

cv
 a

cc
u

ra
cy

Raw
Normalized

6.034 - Spring 03 • 47

Remember Decision Trees
Use all the data to build a tree of questions with

answers at the leaves

precip

clothes

temp > 90? weekend?

drive

walk

none
rain

snow

formal casual

yes

no

yes

yes

no no

drive

drive drive walk walk

shop?

6.034 - Spring 03 • 48

Numerical Attributes

• Tests in nodes can be of the form xj > constant

6.034 - Spring 03 • 49

Numerical Attributes

• Tests in nodes can be of the form xj > constant
• Divides the space into axis-aligned rectangles

6.034 - Spring 03 • 50

Numerical Attributes

• Tests in nodes can be of the form xj > constant
• Divides the space into axis-aligned rectangles

f1 > 2

1

no yes

1

2 f1

f2

6.034 - Spring 03 • 51

Numerical Attributes

• Tests in nodes can be of the form xj > constant
• Divides the space into axis-aligned rectangles

f1 > 2

f2 > 4 1

0 1

no

yes

yes

no

1

1

0

4

2 f1

f2

6.034 - Spring 03 • 52

Numerical Attributes

• Tests in nodes can be of the form xj > constant
• Divides the space into axis-aligned rectangles

• Non-axis aligned hypotheses can be smaller but
hard to find

f1 > 2

f2 > 4 1

0 1

no

yes

yes

no

1

1

0

4

2 f1

f2

6.034 - Spring 03 • 53

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

Considering Splits

• Consider a split between each point in each
dimension

6.034 - Spring 03 • 54

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

Considering Splits

• Consider a split between each point in each
dimension

6.034 - Spring 03 • 55

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

Considering Splits

• Consider a split between each point in each
dimension

6.034 - Spring 03 • 56

Considering Splits

• Choose split that minimizes average entropy of
child nodes

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

6.034 - Spring 03 • 57

Bankruptcy Example

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

L<y NL PL NR PR AE

6.5 7 6 0 1 0.93

5.0 7 4 0 3 0.74

3.5 6 3 1 4 0.85

2.5 5 2 2 5 0.86

1.5 4 0 3 7 0.63

0.5 1 0 6 7 0.93

#
 neg to left

#
 neg to right

#
 pos to left

#
 pos to right

AE 1.00 1.00 0.98 0.98 0.94 0.98 0.92 0.98 0.92

R<x 0.25 0.40 0.60 0.85 1.05 1.15 1.35 1.60 1.80

6.034 - Spring 03 • 58

Bankruptcy Example

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

L<y NL PL NR PR AE

6.5 7 6 0 1 0.93

5.0 7 4 0 3 0.74

3.5 6 3 1 4 0.85

2.5 5 2 2 5 0.86

1.5 4 0 3 7 0.63

0.5 1 0 6 7 0.93

AE 1.00 1.00 0.98 0.98 0.94 0.98 0.92 0.98 0.92

R<x 0.25 0.40 0.60 0.85 1.05 1.15 1.35 1.60 1.80

6.034 - Spring 03 • 59

Bankruptcy Example

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

L<y NL PL NR PR AE

6.5 7 6 0 1 0.93

5.0 7 4 0 3 0.74

3.5 6 3 1 4 0.85

2.5 5 2 2 5 0.86

1.5 4 0 3 7 0.63

0.5 1 0 6 7 0.93

AE 1.00 1.00 0.98 0.98 0.94 0.98 0.92 0.98 0.92

R<x 0.25 0.40 0.60 0.85 1.05 1.15 1.35 1.60 1.80 ?? 0

no yes
L > 1.5

6.034 - Spring 03 • 60

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

Bankruptcy Example

?? 0

no yes
L > 1.5

AE 0.85 0.88 0.79 0.60 0.69 0.76 0.83

R<x 0.25 0.40 0.60 0.90 1.30 1.60 1.80

L<y NL PL NR PR AE

6.5 6 3 0 1 0.83

5.0 4 3 0 3 0.69

3.5 3 2 4 1 0.85

2.5 2 1 5 2 0.88

6.034 - Spring 03 • 61

Bankruptcy Example

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

R > 0.9 0
no

yes
L > 1.5

L<y NL PL NR PR AE

6.5 6 3 0 1 0.83

5.0 4 3 0 3 0.69

3.5 3 2 4 1 0.85

2.5 2 1 5 2 0.88

AD 0.85 0.88 0.79 0.60 0.69 0.76 0.83

R<x 0.25 0.40 0.60 0.90 1.30 1.60 1.80
1

yes

??

6.034 - Spring 03 • 62

Bankruptcy Example

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

R > 0.9 0
no

yes
L > 1.5

1

yes

??

L<y NL PL NR PR AE

6.5 3 2 0 1 0.81

5.0 3 0 0 3 0.00

3.5 2 0 1 3 0.54

2.5 1 0 2 3 0.81

AE 1.00 0.92 1.00

R<x 0.25 0.40 0.60

6.034 - Spring 03 • 63

Bankruptcy Example

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

R > 0.9 0
no

yes
L > 1.5

1

yes

L>5.0

L<y NL PL NR PR AE

6.5 3 2 0 1 0.81

5.0 3 0 0 3 0.00

3.5 2 0 1 3 0.54

2.5 1 0 2 3 0.81

AE 1.00 0.92 1.00

R<x 0.25 0.40 0.60 no yes
0 1

6.034 - Spring 03 • 64

Bankruptcy Example

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2

R

L

No
Yes

R > 0.9 0
no

yes
L > 1.5

1

yes

L>5.0
no yes
0 1

6.034 - Spring 03 • 65

Heart Disease

• Best performance (.77) slightly worse than nearest
neighbor (.81)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

min leaf size

cv
 a

cc
ur

ac
y

6.034 - Spring 03 • 66

Heart Disease

yes
thal = 1

thal = 1: normal exercise thallium scintigraphy test

no

6.034 - Spring 03 • 67

Heart Disease

yes
thal = 1

thal = 1: normal exercise thallium scintigraphy test
ca = 0: no vessels colored by fluoroscopy

no

ca = 0
yes no

6.034 - Spring 03 • 68

Heart Disease

yes
thal = 1

thal = 1: normal exercise thallium scintigraphy test
ca = 0: no vessels colored by fluoroscopy

no

ca = 0

1

yes no

6.034 - Spring 03 • 69

Heart Disease

yes
thal = 1

0 1

thal = 1: normal exercise thallium scintigraphy test
ca = 0: no vessels colored by fluoroscopy
exang: exercise induced angina

no

ca = 0

exang 1

yes no

6.034 - Spring 03 • 70

Heart Disease

ca=0

yes
thal = 1

0 1

thal = 1: normal exercise thallium scintigraphy test
ca = 0: no vessels colored by fluoroscopy
exang: exercise induced angina

no

ca = 0

exang 1

yes no yes no

6.034 - Spring 03 • 71

Heart Disease

ca=0

yes
thal = 1

0 1

thal = 1: normal exercise thallium scintigraphy test
ca = 0: no vessels colored by fluoroscopy
exang: exercise induced angina

no

ca = 0

exang chest-pain 1

0 1

yes no yes no

6.034 - Spring 03 • 72

Heart Disease

ca=0

0

yes
thal = 1

0 1

thal = 1: normal exercise thallium scintigraphy test
ca = 0: no vessels colored by fluoroscopy
exang: exercise induced angina

no

ca = 0

exang age < 57.5 chest-pain 1

0 1

yes no yes no

6.034 - Spring 03 • 73

Heart Disease

ca=0

0

yes
thal = 1

0 1

thal = 1: normal exercise thallium scintigraphy test
ca = 0: no vessels colored by fluoroscopy
exang: exercise induced angina
oldpk: feature of cardiogram

no

ca = 0

exang age < 57.5 chest-pain 1

0 1 oldpk<3.2

0 1

yes no yes no

6.034 - Spring 03 • 74

Auto MPG

• Performance (.91) essentially the same as nearest
neighbor

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

min leaf size

cv
 a

cc
ur

ac
y

6.034 - Spring 03 • 75

More than 22 MPG?

0

displacement > 189.5

0

1

weight > 2224.5

year > 78.5 1

1

weight > 2775

6.034 - Spring • 76

Bankruptcy Example

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2
R

L

No
Yes

6.034 - Spring • 77

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2
R

L

No
Yes

1-Nearest Neighbor Hypothesis

6.034 - Spring • 78

Decision Tree Hypothesis

R > 0.9 0
no

yes
L > 1.5

1

yes

L>5.0
no yes
0 1

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2
R

L

No
Yes

6.034 - Spring • 79

Linear Hypothesis

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2
R

L

No
Yes

6.034 - Spring • 80

Linearly Separable

6.034 - Spring • 81

Not Linearly Separable

6.034 - Spring • 82

Not Linearly Separable

6.034 - Spring • 83

Not Linearly Separable

6.034 - Spring • 84

Linear Hypothesis Class

• Equation of a hyperplane in the feature space

• w, b are to be learned

0=+! bxw

!
=

=+
n

j
jj bxw

1
0

6.034 - Spring • 85

Linear Hypothesis Class

• Equation of a hyperplane in the feature space

• w, b are to be learned

0=+! bxw

!
=

=+
n

j
jj bxw

1
0

x1

x2

w=[w1 w2]

w/b!

6.034 - Spring • 86

Linear Hypothesis Class

• Equation of a hyperplane in the feature space

• w, b are to be learned

• A useful trick: let x0=1 and w0=b

0=+! bxw

!
=

=+
n

j
jj bxw

1
0

0=! xw

!
=

=
n

j
jjxw

0
0

x1

x2

w=[w1 w2]

w/b!

6.034 - Spring • 87

Hyperplane: Geometry

x1

x2

b!

ŵ

x

unit
normal

offset

6.034 - Spring • 88

Hyperplane: Geometry

x1

x2

b!

ŵ

xxw !ˆ

b+! xŵ
signed perpendicular
distance of point x to
hyperplane.

recall: !cosbaba ="

!

6.034 - Spring • 89

Hyperplane: Geometry

x1

x2

b!

ŵ

xxw !ˆ

b+! xŵ
signed perpendicular
distance of point x to
hyperplane.

recall: !cosbaba ="

perp
distance is

positive

perp
distance is
negative !

perp
distance is

zero

6.034 - Spring • 90

Linear Classifier

x1

x2

w

x

)()()(xwxwx !"+!= signbsignh

outputs +1 or -1

6.034 - Spring • 91

Linear Classifier

x1

x2

w

ix

iiii
i yby xwxw !"+!")(#

proportional to
perpendicular distance of
point xi to hyperplane.

γi > 0 : point is correctly
classified (sign of distance = yi)

yk = -1
γi < 0 : point is incorrectly
classified (sign of distance ≠ yi)

yi = +1

kx

i!

k!

Margin:

6.034 - Spring • 92

Perceptron Algorithm
Rosenblatt, 1956

• Pick initial weight vector (including b), e.g. [0 … 0]
• Repeat until all points correctly classified

• Repeat for each point
– Calculate margin () for point i
– If margin > 0, point is correctly classified
– Else change weights to increase margin;

change in weight proportional to

iiy xw

iiy x

6.034 - Spring • 93

Perceptron Algorithm
Rosenblatt, 1956

• Pick initial weight vector (including b), e.g. [0 … 0]
• Repeat until all points correctly classified

• Repeat for each point
– Calculate margin () for point i
– If margin > 0, point is correctly classified
– Else change weights to increase margin;

change in weight proportional to

iiy xw

iiy x

•  Note that, if yi = 1
if xj

i > 0 then wj increased (increases margin)
if xj

i < 0 then wj decreased (increases margin)
•  And, similarly for yi = -1

6.034 - Spring • 94

Perceptron Algorithm
Rosenblatt, 1956

• Pick initial weight vector (including b), e.g. [0 … 0]
• Repeat until all points correctly classified

• Repeat for each point
– Calculate margin () for point i
– If margin > 0, point is correctly classified
– Else change weights to increase margin;

change in weight proportional to

iiy xw

iiy x

•  Note that, if yi = 1
if xj

i > 0 then wj increased (increases margin)
if xj

i < 0 then wj decreased (increases margin)
•  And, similarly for yi = -1
•  Guaranteed to find separating hyperplane if one exists
•  Otherwise, data are not linearly separable, loops forever

6.034 - Spring • 95

Perceptron Algorithm
Bankruptcy Data

Final Answer:
 w=[-2.2 0.94 0.4]

Initial Guess:
 w=[0.0 0.0 0.0]

rate η = 0.1

6.034 - Spring • 96

Gradient Ascent

• Why pick as increment to weights?
• To maximize scalar function of one variable f(w)

• Pick initial w
• Change w to w + η df/dw (η > 0, small)
• until f stops changing (df/dw 0)

iiy x

f

w

df/dw > 0
slope

df/dw= 0
local extremum

η df/dw

!

"

6.034 - Spring • 97

Gradient Ascent/Descent

• To maximize f(w)
• Pick initial w
• Change w to w + η ∇wf (η > 0, small)
• until f stops changing (∇wf ≈ 0)

• Finds local maximum; global maximum if function is
globally convex.

!
"

#
$
%

&

'

'

'

'
=(

nw
f

w
ff ,,
1

…w

6.034 - Spring • 98

Gradient Ascent/Descent

• To maximize f(w)
• Pick initial w
• Change w to w + η ∇wf (η > 0, small)
• until f stops changing (∇wf ≈ 0)

• Finds local maximum; global maximum if function is
globally convex

• Rate (η) has to be chosen carefully.
• Too small –

slow convergence
• Too big –

oscillation

!
"

#
$
%

&

'

'

'

'
=(

nw
f

w
ff ,,
1

…w

f

w

6.034 - Spring • 99

Perceptron Training
via Gradient Descent

• Maximize sum of margins of misclassified points

!=
iedmisclassif

)(
i

iiyf xww

!="
iedmisclassif i

iiyf xw

6.034 - Spring • 100

Perceptron Training
via Gradient Descent

• Maximize sum of margins of misclassified points

!=
iedmisclassif

)(
i

iiyf xww

•  Off-line training: Compute gradient as sum over all
training points.

•  On-line training: Approximate gradient by one of
the terms in the sum:

!="
iedmisclassif i

iiyf xw

iiy x

6.034 - Spring • 101

Perceptron Algorithm
Bankruptcy Data

 w0 w1 w2
-1.0 1.00 1.0
-1.3 0.71 0.6
-1.4 0.66 0.5
-1.4 0.66 0.8
-1.5 0.61 0.7
-1.6 0.56 0.6
-1.6 0.65 0.6
-1.6 0.74 0.6
-1.6 0.83 0.6
-1.7 0.81 0.3

Initial Guess:
 w=[-1.0 1.0 1.0]

Final Answer:
 w=[-1.7 0.81 0.3]

rate η = 0.1

6.034 - Spring • 102

Perceptron Algorithm
Bankruptcy Data

rate η = 0.1

-9x(0.2 3) -4x(0.5 4)

-1x(0.7 2) -1x(1.7 1)

5x(0.2 6) 3x(1.1 3)

Initial Guess:
 w=[-1.0 1.0 1.0]

Final Answer:
 w=[-1.7 0.81 0.3]

 5 x (1.0 0.2 6.0)
 3 x (1.0 1.1 3.0)
-9 x (1.0 0.2 3.0)
-1 x (1.0 0.7 2.0)
-4 x (1.0 0.5 4.0)
-1 x (1.0 1.7 1.0)

 (-7.0 -1.9 -7.0)

 x 0.1 =
 (-0.7 -0.19 -0.7)

6.034 - Spring • 103

Dual Form

 5 x (1.0 0.2 6.0)
 3 x (1.0 1.1 3.0)
-9 x (1.0 0.2 3.0)
-1 x (1.0 0.7 2.0)
-4 x (1.0 0.5 4.0)
-1 x (1.0 1.7 1.0)

 (-7.0 -1.9 -7.0) x 0.1
=
 (-0.7 -0.19 -0.7)

111111

888

777

444

333

11

x
x
x
x
x
x1

y
y
y
y
y
y

!

!

!

!

!

!

!
=

=
m

i
iiiy

1
xw "#

Assume initial weights are 0; rate=η>0

αi is count of
mistakes on point
i during training

6.034 - Spring • 104

Dual Form

 5 x (1.0 0.2 6.0)
 3 x (1.0 1.1 3.0)
-9 x (1.0 0.2 3.0)
-1 x (1.0 0.7 2.0)
-4 x (1.0 0.5 4.0)
-1 x (1.0 1.7 1.0)

 (-7.0 -1.9 -7.0) x 0.1
=
 (-0.7 -0.19 -0.7)

!

"1y
1x 1

"3y
3x 3

"4y
4x 4

"7y
7x 7

"8y
8x 8

"11y
11x 11

!
=

=
m

i
iiiy

1
xw "#

Assume initial weights are 0; rate=η>0

αi is count of
mistakes on point
i during training

!

h(x) = sign(w " x) = sign(# iy
ix i " x

i=1

m

$)

η just scales
answer, set to 1

6.034 - Spring • 105

Perceptron Training
Dual Form

•  α = 0
• Repeat until all points correctly classified

• Repeat for each point i
– Calculate margin

– If margin > 0, point is correctly classified
– Else increment αi

• Return

• If data is not linearly separable, the αi grow without
bound

!

" jy
jx j # x i

j=1

m

$

!

w = " j
j=1

m

y jx j

