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Example Bayes’ Net

Slide 3 CS 5300: Bayes Nets I



'U Hal Daumé 11l (hal@cs.utah.edu)

THE &
UNIVERSITY
OF UTAH

Bayes’ Nets

> A Bayes’ net is an efficient encoding of a probabilistic model
of a domain

> Questions we can ask:
Inference: given a fixed BN, what is P(X | €)?

Representation: given a fixed BN, what kinds of distributions can
it encode?

> Modeling: what BN is most appropriate for a given domain?

Slide 4 CS 5300: Bayes Nets I
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Bayes’ Net Semantics

> A Bayes’ net:
> A set of nodes, one per variable X
> A directed, acyclic graph

> A conditional distribution of each variable
conditioned on its parents (the
parameters 0)

P(Xl|ay...an)

> Semantics:
> A BN defines a joint probability

distribution over its variahles:n

P(z1,22,...2n) = || P(x;|parents(X;))

=1
Slide 5 CS 5300: Bayes Nets I
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Building the (Entire) Joint

> We can take a Bayes’ net and build any entry from
the full joint distribution it encodes

n
P(z1,22,...2n) = || P(x;|parents(X;))
i=1

> Typically, there’s no reason to build ALL of it
> We build what we need on the fly

> To emphasize: every BN over a domain implicitly
defines a joint distribution over that domain, specified
by local probabilities and graph structure

Slide 6 CS 5300: Bayes Nets I
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Example: Coin Flips

P(X1) P(X>) P(Xn)
h 0.5 h 0.5 L. h 0.5
t 0.5 t 0.5 t 0.5
P(h h,t h) =

Only distributions whose variables are absolutely
independent can be represented by a Bayes’ net

with no arcs.
Slide 7 CS 5300: Bayes Nets I
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Example: Traffic

P(R)

@ F | 1/4 P(r,—t) =
=T 3/4

r— t 3/4

2t | 1/4

it 1/2
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Example: Alarm Network

Burglary

P(E)

P(B)
001 Earthquake 002

B E |P(AB.E)
T T| .95

T F | .94

F T| .29

F F

001

P(J|A) A [P(M]A)
T .90 70
F .05

01
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Example: Traffic I

> Variables

> T: Traffic
> R:ltrains
> L: Low pressure
> D: Roof drips
> B: Ballgame
Slide 10
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Size of a Bayes’ Net

>

vV V V VY

Slide 11

How big is a joint distribution over N Boolean variables?

How big is an N-node net if nodes have k parents?

Both give you the power to calculate
BNs: Huge space savings!

Also easier to elicit local CPTs

Also turns out to be faster to answer queries (next class)

P(X1,Xo,...Xn)

CS 5300: Bayes Nets I
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Bayes’ Nets

> So far:
> What is a Bayes’ net?
> What joint distribution does it encode?

> Next: how to answer queries about that distribution

> Key idea: conditional independence

> Last class: assembled BNs using an intuitive notion of
conditional independence as causality

> Today: formalize these ideas

> Main goal: answer queries about conditional independence
and influence

> After that: how to answer numerical queries
(inference)

Slide 12 CS 5300: Bayes Nets I
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Bayesian Network: Student Model

Graph and CPDs Val(D)={i"=low intelligence,
2| o | ]| i'= high intelligence}

06 | 04

Val(D)={d"=easy, d'=hard}

i%d4°1 023

i%d' | 0.05 Val(G):{g]:A’ gZZB’ g3:C}

i9d°109 |0.08 0.02 sO | st
'O,dl o‘ 0'3 0.2 @% 0
0, 5 |o. . i% 1095 | 0.05
Loz [08 | Val(S)={s"=low, s'=high)

°
ghlo1 09
g?lo04 |06
g2 | 099 | 001 Val(L)={I"=weak, I'=strong}
P(D,1,G,S,L)=P(D)P(HP(GID,DHPSINHP(LIG) Chain rule fOI"

PG'.d’.g°.s",1") =P )P )P(g" 1i'.d")P(s' liP("Ig")  Bayesian network
=0.3-0.6-0.08-0.8-0.4=0.004608
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Reasoning Patterns

Reasoning about a student George using the model

« Causal Reasoning

— George is interested in
knowing as to how likely he
Is to get a strong letter

o (based on intelligence, v
i%d° 03 -
at 003 | difficulty)?
i%.d° | o. . . sO | st
i%d! g.i 2.28 ?).22 @% i%[0.95 | 0.05 A
it 102 |08 . . .
L « Evidential Reasoning
Sl EYREY — Recruiter is interested in
g ] 099 | 001 knowing whether George is
intelligent (based on letter,
SAT)
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Causal Reasoning

Observe how

1. How likely is George to get a strong probabilities
letter (knowing nothing else)? change as

- P(1))=0.502 evidence

« Obtained by summing-out other variables in P(D’I’Gfllgbtamed
joint distribution S P(D)PHPGID.HP(SIDP('|G)

2 But George is not so intelligent (%)

: P(11i%=0.389

3. Next we find out ECON101 is easy (d")

: P, d)=0.513 i

Query is Example of Causal Reasoning:

Predicting downstream effects of factors such as intelligehce
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Evidential Reasonlng

Recruiter wants to hire
intelligent student

A priori George is 30% likely
to be intelligent
P@i')=0.3
Finds that George received
grade C (g°) in ECON101
P(i'|g°)=0.079
Similarly probability class is
difficult goes up from 0.4 to
P(d"g’)=0.629
If recruiter has lost grade
but has letter

P(i|1°)=0.14

06| 04

0.3 .

0.05 | 0.

0.9 10.08 | 0.02

IR
U
=T TR TS

05 |03 |02 i 1095 | 0.05

102 |08

ghlo1 |09
g2l 04 |06
g210.99 | 0.01

Recruiter has both grade and
letter

P(i'10.%)=0.079

— Same as if he had only grade
— Letter is immaterial

Reasoning from effects to
causes is called evidential

. 6
reasoning
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* Recruiter has grade (letter does
not matter)

«  P@g)=P(|1'¢%)=0.079
* Recruiter receives high SAT
score (leads to dramatic

increase)
o P(illg?s1)=0.578
* Intuition:

— High SAT score outweighs poor grade since
low intelligence rarely gets good SAT scores

— Smart students more likely to get Cs in hard
classes

* Probability of class is difficult
also goes up from

. P(d!|g})=0.629 to
o P(d'|g’s1)=0.76

Srihari

Intercausal reasoning

dO dl l'O l'l
0.6 | 0.4

i%d" | 0.05

i0d% |09 | 008002 s | st

) : : : Letter

%" 105 |03 |02 i% 095 | 0.05
102 |08

07

ghlo1 |09

g2l 04 |06
g210.99 | 0.01

Information about SAT score gave
us information about Intelligence

which with Grade told us about
difficulty of course

One causal factor for Grade
(Intelligence) qgives us information
about another (Difficulty)
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Explaining Away.,.

An example:

Another
example:

Srihari

0.3 .

0.05

IR
[N NS
= =S

0.9

Given grade
P@1°.g%)=0.079
If we observe

ECON101 is a hard
class

Pil\g?,d)=0.11
We have provided
partial explanation
for George'’s

performance in
ECON101

« If George gets a
B in ECON101

«  P(il|g?)=0.175

* |f we observe
ECON101 is a
hard class

« P(i'|g?,d)=0.34
« We have

explained away
the poor grade
via the difficulty
of the class

0.5 .

Explaining away
IS one type of
intercausal
reasoning

Different causes of
the same effect can
interact

All determined by
probability
calculation rathe¥
than heuristics
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Intercausal Reasoning is
Common in Human Reasoning

Another example of .
explaining away *

Sore Throat
S

Binary Variables

Fever & Sore Throat can
be caused by mono and
flu

When flu is diagnosed
probability of mono is
reduced (although mono
could still be present)
It provides an alternative
explanation of symptoms

P(m'|s')>P(m'|s".f)
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Another Type of Intercausal Reasoning

* Binary Variables
— Murder (leaf node)

— Motive and Opportunity are
causal nodes

 Binary Variables X,Y,Z

« X and Y both increase the
probability of Murder
— PE!x!)>P(Z!)
— P(')y")>P(zY)

 Each of Xand Y increase
probability of other
— P!>z <Px!ylz)
— POZ)<P(’Ix2!)

Can go in any direction
Different from Explaining

Away 10
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Dependencies and Independencies

 Crucial for understanding network behavior

* Independence properties are important for
answering queries
— Exploited to reduce computation of inference
— A distribution P that factorizes over G satisfies I(G)

— Are there other independencies that can be read off
directly from G?

* That hold for every P that factorizes over G

12
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Conditional Independence

> Reminder: independence
> XandY are independent if

Ve,y P(z,y) = P(z)P(y) —---» XY

» XandY are conditionally independent given Z
Vz,y,z P(x,ylz) = P(x|z)P(y|2)---» X 1L Y|Z

> (Conditional) independence is a property of a
distribution

Slide 13 CS 5300: Bayes Nets I
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Example: Independence
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> For this graph, you can fiddle with 6 (the CPTs) all you want,
but you won't be able to represent any distribution in which

the flips are dependent!

0 ®

P(X1) P(X>)
h 0.5 h 0.5
t 0.5 t 0.5

Slide 14

X1 1L X5

All distributions

CS 5300: Bayes Nets I
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Topology Limits Distributions

> (@Given some graph @

topology G, only certain
joint distributions can be @ @
encoded

> The graph structure
guarantees certain
(conditional)
independences

> (There might be more
independence)

> Adding arcs increases

the set of distributions,
but has several costs

Slide 15 CS 5300: Bayes Nets I
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Independence in a BN

> Important question about a BN:

Are two nodes independent given certain evidence?
If yes, can calculate using algebra (really tedious)

If no, can prove with a counter example

Example:

> Question: are X and Z independent?

> Answer: not necessarily, we’'ve seen examples otherwise: low
pressure causes rain which causes traffic.

» Xcan influence Z, Z can influence X (via Y)
> Addendum: they could be independent: how?

vV V V VY

Slide 16 CS 5300: Bayes Nets I
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Direct Connection between Xand Y

« X and Y are correlated regardless of any
evidence about any other variables
— E.qg., Feature Y and character X are correlated

— Grade G and Letter L are correlated

 |f Xand Y are directly connected we can get
examples where they influence each other
regardless of Z ] aK

0.05 | 0.
0.9 .
0.5 .

RIS
U X[
=Y N =t

0 1
g o1 oo 13
2
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Indirect Connection betwn Xand Y

 Four cases where X and Y are connected via Z

1. Indirect causal effect

2. Indirect evidential effect

3. Common cause % g @{@b%{@
4. Common effect oo . :

« We will see that first three cases are similar
while fourth case (V-structure) is different

14
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1. Indirect Causal Effect; x>z>vy

« Cause X cannot influence effect Y if Z observed
— Observed Z blocks influence

* |If Grade is observed then | does not influence
L

— Intell influences Letter if Grade is unobserved

(b) (c) (d)

RIS
U X
—_— (=} —_ (=]

(a)

Z = Grade 2 Tox Tos
| ind LlG g% | 0.99 001 15
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Causal Chains

> This configuration is a “causal chain”
X: Low pressure

Z.: Traffic
P(x,y,z) = P(z)P(y|z) P(z|y)

> Is X independent of Z given Y?
P(z,y,2) _ P(z)P(ylz)P(z]y)
P(z,y) P(z)P(y|z)

P(zlz,y) =

— P(z|y) Yes!

> Evidence along the chain “blocks” the influence

Slide 17 CS 5300: Bayes Nets I
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2. Indirect Evidential Effect; y=>z>x

* Evidence X can influence YviaZ onlyif Zis

unobserved

— Observed Z blocks influence

* |f Grade unobserved, Letter influences
assessment of Intelligence

* Dependency is a symmetric notion
— X_L Y does not hold then Y_LX does not hold either

%

Z = Grade

16
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3. Common Cause: X€&Z-2>Y

Srihari

« X can influence Y if and only if Z is not observed
— Observed Z blocks

 Grade is correlated with SAT score

» But if Intelligence is observed then SAT
provides no additional information

dO

(b)

"

()

(d)

Sind G|l

ol el e
U |
= 2 =

17
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Common Cause

> Another basic configuration: two
effects of the same cause

> Are X and Z independent?

> Are X and Z independent given Y?

_ P(x,y,z) _ P(y)P(z|y) P(z|y) Y: Project due

P('xay> P(y)P(xky) X: Email busy
Z: Lab full
= P(z
(z]y) Voo

> QObserving the cause blocks influence
between effects.

Slide 18 CS 5300: Bayes Nets I
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4. Common Effect (V-structure) X>Z €Y

* Influence cannot flow on traill X=2Z€Y if Z is not
observed

— Observed Z enables
— Opposite to previous 3 cases (Observed Z blocks)

 When G not observed / and D are independent
* When G Is observed, 7 and D are correlated

dl | | i()
(a) (b) (0) '

:2': LellelL e
U |
= 2 =

g2 04 |06
I |nd D|~G g210.99 | 0.01 18
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Common Effect

> Last configuration: two causes of one
effect (v-structures)

> Are X and Z independent?

> Yes: remember the ballgame and the rain causing
traffic, no correlation?

> Still need to prove they must be (try it!)
> Are X and Z independent given Y?

> No: remember that seeing traffic put the rain and X: Raining
the ballgame in competition?

> This is backwards from the other cases

> Qbserving the effect enables influence between
effects.

Z: Ballgame
Y: Traffic

Slide 19 CS 5300: Bayes Nets I
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Active Trall
 Grade is not observed
 Observe weak letter

— Which indicates low grade
— Suffices to correlate D and [

 \When influence can flow from Xto Y
via Z then traill X—Z2—Y Is active

Consider Trail D>G<1=2S

Z={¢}: inactive because v-
° Su mmary structure D>G< | is inactive
Causal trail: Xx=>Z-2Y: active iff Z not observed Z={L}: active (D>G < active)

since L is descendant of G

Evidential Trail: X€&Z €Y: active iff Z is not observed -
Z={L,l}: inactive because

o _ observing | blocks G<&1-2S.
Common Cause: X<&Z-Y: active iff Z is not observed

Common Effect: X=>Z &Y: active iff either Z or one of its descendants is observed



D-separation definition

Let X,Y and Z be three sets of nodes in G.

X and Y are d-separated given Z denoted
d-sep(X:Y|Z) if there is no active tralil
between any node XeX and Y&€Y given Z

That is, nodes in X cannot influence nodes
nY
Provides notion of separation between

nodes in a directed graph (“directed”
separation)

20
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Independencies from d-separation

« Consider variables pairwise using d-
separation

I(G)={(DL1S,Ll¢),dLD,SLI9),

(GLLSID,DH(LLIDSIG),SLDG,LII(DLSII
— Also called Markov independencies
 Definition:

I(G)={(X LY|2): d-sepy(X:Y|2)} ‘

21
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The General Case

> Any complex example can be analyzed using these three
canonical cases

> @General question: in a given BN, are two variables
independent (given evidence)?

> Solution: analyze the graph

Slide 20 CS 5300: Bayes Nets I
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Reachability

> Recipe: shade evidence nodes e

> Attempt 1: if two nodes are connected

by an undirected path not blocked by
a shaded node, they are conditionally e e

independent

> Almost works, but not quite Q G
> Where does it break?
> Answer: the v-structure at T doesn’t count
as a link in a path unless “active”

Slide 21 CS 5300: Bayes Nets I
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Reachability (the Bayes’ Ball)

> Correct algorithm:
Shade in evidence
Start at source node
Try to reach target by search <
States: pair of (node X, previous
state S)

Successor function:
» X unobserved:

> To any child
> To any parent if coming from a
child
> X observed:
> From parent to parent 4
> If you can’t reach a node, it's
conditionally independent of the

start node given evidence

YV V VYV V

A\

Slide 22 CS 5300: Bayes Nets I
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Reachability (D-Separation)

» Question: Are Xand Y
conditionally independent given
evidence variables {Z}?

> Look for “active paths” from X
toY

> No active paths =
independence!

> A path is active if each triple is
either a:
» CausalchainA - B - C
where B is unobserved (either
direction)

> Common_ causeA -« B - C
where B is unobserved

> Common effect (aka v-
structure)

A - B — C where B or one of

its descendents is observed
Slide 23

Active Triples

O—-0O—0

1€ 4

Hal Daumé Il (hal@cs.utah.edu)

Inactive Triples

O-@~C
o @
S
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Example

AU W
AL WI|R

Slide 24

Yes

Hal Daumé Il (hal@cs.utah.edu)

aliens watch

late O
O

report
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Example
L1LT\T
L1 B
L1 B|T
L1 B|T
L1 B|T,R
Slide 25

Yes

Yes

Yes

Hal Daumé Il (hal@cs.utah.edu)
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Example

> Variables:

> R: Raining

> T: Traffic e
> D: Roof drips
>

S: I'm sad e e
> Questions:

T 1 D
Tl DR Yes

Slide 26 CS 5300: Bayes Nets I
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Causality?

> When Bayes' nets reflect the true causal patterns:
> Often simpler (nodes have fewer parents)
> Often easier to think about
> Often easier to elicit from experts

> BNSs need not actually be causal
> Sometimes no causal net exists over the domain
> E.g. consider the variables Traffic and Drips
> End up with arrows that reflect correlation, not causation

> What do the arrows really mean?
> Topology may happen to encode causal structure

> Topology only guaranteed to encode conditional
independence

Slide 27 CS 5300: Bayes Nets I
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Example: Traffic

> Basic traffic net

> Let’s multiply out the joint

Slide 28

P(R)

1/4

3/4

Hal Daumé Il (hal@cs.utah.edu)

3/4

P(T, R)
r t |3/16
r -t | 1/16
=T t 6/16
“r =t 6/16

1/4

1/2

1/2

CS 5300: Bayes Nets I
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Example: Reverse Traffic

> Reverse causality?

Slide 29

P(T)

9/16

7/16

Hal Daumé Il (hal@cs.utah.edu)

1/3

P(T, R)
r t [3/16
r =t 1/16
=il t 6/16
“r =t 6/16

2/3

1/7

6/7

CS 5300: Bayes Nets I
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Example: Coins

> Extra arcs don’t prevent representing independence,
just allow non-independence

OO

P(X1) P(X>) P(X1)  P(X2o|X1)
h |05 h |05 h |05 | hinlos
t 0.5 t 0.5 t 0.5 tlh | 0.5
hlit | 0.5
(1t | 0.5

Slide 30 CS 5300: Bayes Nets I
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Alternate BNs

MaryCalls

®
@’/@L@)

JohnCalls

Qurglary

Slide 31 CS 5300: Bayes Nets I
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Summary

> Bayes nets compactly encode joint distributions

> Guaranteed independencies of distributions can be
deduced from BN graph structure

> The Bayes’ ball algorithm (aka d-separation)

> A Bayes’ net may have other independencies that
are not detectable until you inspect its specific
distribution

Slide 32 CS 5300: Bayes Nets I
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Independencies in a BN

dO
0.6 0.4

i%d" | 0.05

i%d° [ 09 |0.08

0.02

i%d" |05 |03

ZO

ll

gl] ol

0.9

g*| 04

0.6

g% 1099

0.01

« Graph with CPDs

Is equivalent to a set of
1o Independence assertions

P(D,1,G,S,L)= P(D)P(I)P(G|D,HP(S|HP(LI|G)

* Local Conditional Independence Assertions (starting from leaf nodes):
I(G)={(LL1L1,D,SIG),

(S L D,G,LII),
(GLSID,D),
(1L DI ¢),
(D L 1,51¢)}

L is conditionally independent of all other nodes given parent G
S is conditionally independent of all other nodes given parent |
Even given parents, G is NOT independent of descendant L
Nodes with no parents are marginally independent

D is independent of non-descendants | and S

« Parents of a variable shield it from probabilistic influence
* Once value of parents known, no influence of ancestors
« Information about descendants can change beliefs about a node
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Soundness and Completeness

* Formalizing notion of d-separation

e Soundness Theorem

— If a distribution P factorizes according to G then
(G)EI(P)

* A distribution P is faithful to graph G if any
independence in P is reflected in G

— G is then called a Perfect Map
 Completeness Theorem
— Definition of I(G) is the maximal one

* Thus d-separation test precisely characterizes
iIndependencies that hold for P
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Algorithm for d-separation

 Enumerating all trails is inefficient
— Number of trails is exponential with graph size

* Linear time algorithm has two phases
* Algorithm Reachable(G,X Z) returns nodes for X
* Phase 1 (simple)

— Traverse bottom-up from leaves marking all nodes
In Z or descendants in Z; to enable v-structures

* Phase 2 (subtle)

— Traverse top-down from X to Y stopping when
blocked by a node



I-Equivalence

Conditional assertion statements

can be the same with different

structures » ® ® O ® @
Two graphs K; and K, are I-
equivalent if I(K,)=I(K,) RamG vestratture XY €Z

Skeleton of a BN graph G is an
undirected graph with an edge for
every edge in G

If two BN graphs have the same set
of skeletons and v-structures then
they are |-equivalent 24





