
Game playing

Chapter 6

Chapter 6 1

Outline

♦ Games

♦ Perfect play
– minimax decisions
– α–β pruning

♦ Resource limits and approximate evaluation

♦ Games of chance

♦ Games of imperfect information

Chapter 6 2

Games vs. search problems

“Unpredictable” opponent ⇒ solution is a strategy
specifying a move for every possible opponent reply

Time limits ⇒ unlikely to find goal, must approximate

Plan of attack:

• Computer considers possible lines of play (Babbage, 1846)

• Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)

• Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948;
Shannon, 1950)

• First chess program (Turing, 1951)

• Machine learning to improve evaluation accuracy (Samuel, 1952–57)

• Pruning to allow deeper search (McCarthy, 1956)

Chapter 6 3

Types of games

deterministic chance

perfect information

imperfect information

chess, checkers,
go, othello

backgammon
monopoly

bridge, poker, scrabble
nuclear war

battleships,
blind tictactoe

Chapter 6 4

Game tree (2-player, deterministic, turns)

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .
TERMINAL

XX
−1 0 +1Utility

Chapter 6 5

Minimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value
= best achievable payoff against best play

E.g., 2-ply game:
MAX

3 12 8 642 14 5 2

MIN

3
A 1 A 3A 2

A 13A 12A 11 A 21 A 23A 22 A 33A 32A 31

3 2 2

Chapter 6 6

Minimax algorithm

function Minimax-Decision(state) returns an action
inputs: state, current state in game

return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
v←−∞
for a, s in Successors(state) do v←Max(v, Min-Value(s))
return v

function Min-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
v←∞
for a, s in Successors(state) do v←Min(v, Max-Value(s))
return v

Chapter 6 7

Properties of minimax

Complete??

Chapter 6 8

Properties of minimax

Complete?? Only if tree is finite (chess has specific rules for this).
NB a finite strategy can exist even in an infinite tree!

Optimal??

Chapter 6 9

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity??

Chapter 6 10

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(bm)

Space complexity??

Chapter 6 11

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(bm)

Space complexity?? O(bm) (depth-first exploration)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games
⇒ exact solution completely infeasible

But do we need to explore every path?

Chapter 6 12

tlp • Spring03 • 9

USCF rating USCF rating

depth
1200

7 8 9 10 11 12 13 4 5 6

MacHack

World
champ

2000
Expert

2900

α–β pruning example

MAX

3 12 8

MIN 3

3

Chapter 6 13

α–β pruning example

MAX

3 12 8

MIN 3

2

2

X X

3

Chapter 6 14

α–β pruning example

MAX

3 12 8

MIN 3

2

2

X X
14

14

3

Chapter 6 15

α–β pruning example

MAX

3 12 8

MIN 3

2

2

X X
14

14

5

5

3

Chapter 6 16

α–β pruning example

MAX

3 12 8

MIN

3

3

2

2

X X
14

14

5

5

2

2

3

Chapter 6 17

Why is it called α–β?

..

..

..

MAX

MIN

MAX

MIN V

α is the best value (to max) found so far off the current path

If V is worse than α, max will avoid it ⇒ prune that branch

Define β similarly for min

Chapter 6 18

The α–β algorithm

function Alpha-Beta-Decision(state) returns an action
return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state,α,β) returns a utility value
inputs: state, current state in game

α, the value of the best alternative for max along the path to state
β, the value of the best alternative for min along the path to state

if Terminal-Test(state) then return Utility(state)
v←−∞
for a, s in Successors(state) do

v←Max(v, Min-Value(s,α,β))
if v ≥ β then return v
α←Max(α, v)

return v

function Min-Value(state,α,β) returns a utility value
same as Max-Value but with roles of α,β reversed

Chapter 6 19

Properties of α–β

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(bm/2)
⇒ doubles solvable depth

A simple example of the value of reasoning about which computations are
relevant (a form of metareasoning)

Unfortunately, 3550 is still impossible!

Chapter 6 20

Resource limits

Standard approach:

• Use Cutoff-Test instead of Terminal-Test
e.g., depth limit (perhaps add quiescence search)

• Use Eval instead of Utility
i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 104 nodes/second
⇒ 106 nodes per move ≈ 358/2

⇒ α–β reaches depth 8 ⇒ pretty good chess program

Chapter 6 21

Evaluation functions

Black to move

White slightly better

White to move

Black winning

For chess, typically linear weighted sum of features

Eval(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)

e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black queens), etc.

Chapter 6 22

Digression: Exact values don’t matter

MIN

MAX

21

1

42

2

20

1

1 40020

20

Behaviour is preserved under any monotonic transformation of Eval

Only the order matters:
payoff in deterministic games acts as an ordinal utility function

Chapter 6 23

tlp • Spring03 • 28

Game Program

1. Move generator (ordered moves)
Time
50%

2. Static evaluation 40%
3. Search control 10%

openings
end games

databases

[all in place by late 60’s.]

tlp • Spring03 • 29

Move Generator

1. Legal moves

2. Ordered by
1. Most valuable victim
2. Least valuable agressor

3. Killer heuristic

tlp • Spring03 • 30

Static Evaluation

Deep searchers: moderately
complex (hardware)

PC programs: elaborate,
hand tuned

Very Complex

Very simple
 (material)

70’s -

Initially -

now -

tlp • Spring03 • 31

Practical matters

Iterative deepening

order best move from last search first

keep track of repeated positions
(transposition tables)

use previous backed up value to initialize
 [#, !]

Variable branching

Horizon effect

Parallelization

quiescence

Pushing the inevitable over search horizon

Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994. Used an endgame database defining perfect play for all
positions involving 8 or fewer pieces on the board, a total of 443,748,401,247
positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-
game match in 1997. Deep Blue searches 200 million positions per second,
uses very sophisticated evaluation, and undisclosed methods for extending
some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are
too good.

Go: human champions refuse to compete against computers, who are too
bad. In go, b > 300, so most programs use pattern knowledge bases to
suggest plausible moves.

Chapter 6 24

tlp

tlp
Programs using Monte-Carlo Tree Search are now competitive with humans on 9x9 boards and rapidly making progress on 19x19 boards.

The Monte-Carlo Revolution in Go

Rémi Coulom

Université Charles de Gaulle, INRIA, CNRS, Lille, France

January, 2009

JFFoS’2008: Japanese-French Frontiers of Science Symposium

Introduction

Monte-Carlo Tree Search

History

Conclusion

Game Complexity

How can we deal with complexity ?

Game Complexity

Game Complexity∗ Status
Tic-tac-toe 103 Solved manually
Connect 4 1014 Solved in 1988
Checkers 1020 Solved in 2007
Chess 1050 Programs > best humans
Go 10171 Programs � best humans

∗
Complexity: number of board configurations

Rémi Coulom The Monte Carlo Revolution in Go 2 / 12

Introduction

Monte-Carlo Tree Search

History

Conclusion

Game Complexity

How can we deal with complexity ?

Dealing with Huge Trees

Full tree

E E E E E E E E E

Classical approach =
depth limit + pos. evaluation (E)

(chess, shogi, . . .)

Monte-Carlo approach =
random playouts

Rémi Coulom The Monte Carlo Revolution in Go 4 / 12

Introduction

Monte-Carlo Tree Search

History

Conclusion

Game Complexity

How can we deal with complexity ?

Dealing with Huge Trees

Full tree

E E E E E E E E E

Classical approach =
depth limit + pos. evaluation (E)

(chess, shogi, . . .)

Monte-Carlo approach =
random playouts

Rémi Coulom The Monte Carlo Revolution in Go 4 / 12

Introduction

Monte-Carlo Tree Search

History

Conclusion

Game Complexity

How can we deal with complexity ?

Dealing with Huge Trees

Full tree

E E E E E E E E E

Classical approach =
depth limit + pos. evaluation (E)

(chess, shogi, . . .)

Monte-Carlo approach =
random playouts

Rémi Coulom The Monte Carlo Revolution in Go 4 / 12

Introduction

Monte-Carlo Tree Search

History

Conclusion

Principle of Monte-Carlo Evaluation

Monte-Carlo Tree Search

Patterns

Principle of Monte-Carlo Evaluation

Root Position

MC Evaluation

+ + =

Random Playouts

Rémi Coulom The Monte Carlo Revolution in Go 6 / 12

Introduction

Monte-Carlo Tree Search

History

Conclusion

Principle of Monte-Carlo Evaluation

Monte-Carlo Tree Search

Patterns

Basic Monte-Carlo Move Selection

4/103/109/10

Algorithm

N playouts for every move

Pick the best winning rate

5,000 playouts/s on 19x19

Problems

Evaluation may be wrong

For instance, if all moves
lose immediately, except one
that wins immediately.

Rémi Coulom The Monte Carlo Revolution in Go 7 / 12

Introduction

Monte-Carlo Tree Search

History

Conclusion

Principle of Monte-Carlo Evaluation

Monte-Carlo Tree Search

Patterns

Basic Monte-Carlo Move Selection

4/103/109/10

Algorithm

N playouts for every move

Pick the best winning rate

5,000 playouts/s on 19x19

Problems

Evaluation may be wrong

For instance, if all moves
lose immediately, except one
that wins immediately.

Rémi Coulom The Monte Carlo Revolution in Go 7 / 12

Introduction

Monte-Carlo Tree Search

History

Conclusion

Principle of Monte-Carlo Evaluation

Monte-Carlo Tree Search

Patterns

Monte-Carlo Tree Search

3/92/69/15

Principle

More playouts to best
moves

Apply recursively

Under some simple
conditions: proven
convergence to optimal
move when
#playouts→∞

Rémi Coulom The Monte Carlo Revolution in Go 8 / 12

Nondeterministic games: backgammon

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

Chapter 6 25

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:

MIN

MAX

2

CHANCE

4 7 4 6 0 5 −2

2 4 0 −2

0.5 0.5 0.5 0.5

3 −1

Chapter 6 26

Algorithm for nondeterministic games

Expectiminimax gives perfect play

Just like Minimax, except we must also handle chance nodes:

. . .
if state is a Max node then

return the highest ExpectiMinimax-Value of Successors(state)
if state is a Min node then

return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then

return average of ExpectiMinimax-Value of Successors(state)
. . .

Chapter 6 27

Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon ≈ 20 legal moves (can be 6,000 with 1-1 roll)

depth 4 = 20 × (21 × 20)3 ≈ 1.2 × 109

As depth increases, probability of reaching a given node shrinks
⇒ value of lookahead is diminished

α–β pruning is much less effective

TDGammon uses depth-2 search + very good Eval
≈ world-champion level

Chapter 6 28

Digression: Exact values DO matter

DICE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

Behaviour is preserved only by positive linear transformation of Eval

Hence Eval should be proportional to the expected payoff

Chapter 6 29

Games of imperfect information

E.g., card games, where opponent’s initial cards are unknown

Typically we can calculate a probability for each possible deal

Seems just like having one big dice roll at the beginning of the game∗

Idea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals∗

Special case: if an action is optimal for all deals, it’s optimal.∗

GIB, current best bridge program, approximates this idea by
1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average

Chapter 6 30

Commonsense example

Road A leads to a small heap of gold pieces
Road B leads to a fork:

take the left fork and you’ll find a mound of jewels;
take the right fork and you’ll be run over by a bus.

Chapter 6 34

Commonsense example

Road A leads to a small heap of gold pieces
Road B leads to a fork:

take the left fork and you’ll find a mound of jewels;
take the right fork and you’ll be run over by a bus.

Road A leads to a small heap of gold pieces
Road B leads to a fork:

take the left fork and you’ll be run over by a bus;
take the right fork and you’ll find a mound of jewels.

Chapter 6 35

Commonsense example

Road A leads to a small heap of gold pieces
Road B leads to a fork:

take the left fork and you’ll find a mound of jewels;
take the right fork and you’ll be run over by a bus.

Road A leads to a small heap of gold pieces
Road B leads to a fork:

take the left fork and you’ll be run over by a bus;
take the right fork and you’ll find a mound of jewels.

Road A leads to a small heap of gold pieces
Road B leads to a fork:

guess correctly and you’ll find a mound of jewels;
guess incorrectly and you’ll be run over by a bus.

Chapter 6 36

Proper analysis

* Intuition that the value of an action is the average of its values
in all actual states is WRONG

With partial observability, value of an action depends on the
information state or belief state the agent is in

Can generate and search a tree of information states

Leads to rational behaviors such as
♦ Acting to obtain information
♦ Signalling to one’s partner
♦ Acting randomly to minimize information disclosure

Chapter 6 37

Summary

Games are fun to work on! (and dangerous)

They illustrate several important points about AI

♦ perfection is unattainable ⇒ must approximate

♦ good idea to think about what to think about

♦ uncertainty constrains the assignment of values to states

♦ optimal decisions depend on information state, not real state

Games are to AI as grand prix racing is to automobile design

Chapter 6 38

	resultado2:
	seconds: 12
	cronohours: 00
	cronominutes: 02
	crseconds: 55
	day: 31
	month: 03
	year: 2012
	button1:
	button2:
	separatordate:
	hours: 12
	separatortime: :
	minutes: 56

