8 Conditional Probability

(8) We would like to compute Pr(a,b|c,d) but we only have available to us
the following quantities: Pr(a), Pr(b), Pr(c), Pr(ald), Pr(b|d), Pr(c|d), Pr(d|a),
Pr(a,b), Pr(c,d), Pr(ale,d), Pr(ble,d), Pr(c|a,b), Pr(d|a,b).

For each of the assumptions below, give a set of terms that is sufficient to
compute the desired probability, or “none” if it can’t be determined from the
given quantities.

a. A and B are conditionally independent given C and D
b. C and D are conditionally independent given A and B
¢. A and B are independent

d. A, B, and C are all conditionally independent given D

8 Conditional Probability

a. Pr(alc,d), Pr(ble, d)

b. Pr(c|a,b), Pr(d|a,b), Pr(a,b), Pr(c,d)

C. none

d. Pr(a|d), Pr(b|d)



9 Network Structures

(12) Following is a list of conditional independence statements. For each state-
ment, name all of the graph structures, G1 — G4, or “none” that imply it.

a.

b.

Gl G2

G3 e G4
/© 5
® ® ® ©

A is conditionally independent of B given C

A is conditionally independent of B given D

. B is conditionally independent of D given A

B is conditionally independent of D given C
B is independent of C

B is conditionally independent of C given A

9 Network Structures

a. G2

b. none

c. G3,G4

d. none

e. G2, G3
f. G1, G2, G4



10 Counting Parameters

(4) How many independent parameters are required to specify a Bayesian net-
work given each of the graph structures G1 — G4?7 Assume the nodes are binary.

10 Counting Parameters

a. G1. 9
b. G2. 11
c. G3. 8
d. G4. 7
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a. In this network, what is the size of the biggest factor that gets generated if
we do variable elimination with elimination order A,B,C,D.E, F, G?

b. Give an elimination order that has a smaller largest factor.

11 Variable Elimination

a. b
b. B,C,D,E, F, A, G



1. (20 points)

Consider the following Bayesian network:

O
O
& ©

(a) (1 pt) Is it a polytree?

No

(b) (1 pt) Is A independent of C?

Yes

(c¢) (1 pt) Is C independent of E?

(d) (1 pt) Is D independent of C?

(e) (1 pt) Name a variable that, if it were an evidence variable, your answer to the question
in part (b) would be different, or say that there is no such variable. (So, if your answer
to (b) was that they are independent, then name a variable X for which A is not
conditionally independent of C' given X.)

B (makes A and C dependent)




(f) (1 pt) Name a variable that, if it were an evidence variable, your answer to part (c)
would be different, or say that there is none.

No such (single) variable (2 variables B,F)

(g) (1 pt) Name a variable that, if it were an evidence variable, your answer to part (d)
would be different, or say that there is none.

B
(h) (2 pts) If all the nodes are binary, how many parameters would be required to specify
all the CPTs in this network? (Remember that if p is specified then it is not necessary
to specify 1 — p as well.)
16

(i) (3 pts) Give an expression for Pr(D|C) given probabilities that are stored in the CPTs.
Don’t include any unnecessary terms.

Pr(D|C) = >, >, Pr(D|b) x Pr(bla,C) x Pr(a)

(j) (3 pts) What factor is created if we eliminate B first in the course of using variable
elimination to compute Pr(A|G)?

f{A7C7D7E7F}

There are many correct answers to this problem because A is independent of G.

(k) (2 pts) What is the Markov blanket of B?

A,C,D,E,F

(1) (3 pts) Imagine that you're doing likelihood weighting to compute Pr(E = e|A = a).
What weight would you have to assign to sample (a, b, c,d, f,g)?




3. Independence relations
Draw a Bayesian network graph that encodes the following independence relations, or show
that no such graph exists.

(a) e A isindependent of B
e A is independent of C given B
e A is not independent of C

Answer: The last two statements taken together imply that the graph is fully connected, there is
no direct link between A and C, and the structure where B is a common effect of A and
C is not possible. This leaves three possible structures.

i. B is a common cause of A and C. But this is not possible because then A is not
independent of B.

ii. The structures A — B — C and C' — B — A, neither of which are possible because
A is not independent of B in either.

(b) e D is independent of B given A
e B is independent of C
e B is not independent of D
e B is not independent of C given D

Answer: There are multiple such structures, including at least the following:

® ©
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(a) What is the size of the largest CPT in this network?

Answer: No node has more than two parents, so the largest CPT is a function of three variables.
Assuming the variables are binary, the CPT has 23 = 8 entries. We may choose to only
store 4 of these, taking advantage of the fact that the rows in the CPT sum to 1.

(b) What nodes can be ignored while computing Pr(H|M)?
Answer: J, K, L,N,O, P.
(c) Give a minimal expression for Pr(G|A) in terms of CPTs stored in the network.

Answer:
Pr(G, A)

Pr(A)
>pc.rrPr(G|C, F) Pr(C|B) Pr(F|B, E) Pr(B|A) Pr(E|A) Pr(A))

Pr(A)

— Y Pi(G|C, F)Pr(C|B) Px(F|B, E) Pr(B|A) Pr(E|A).
B,C,E,F

Pr(G|4) =




1 Bayesian Networks

(22 points) Consider the network shown below:

1. (2 point) Is this a polytree?

2. (3 points) Assuming the nodes are binary, how many parameters are required to specify the
CPTs?

(2 points) Is F' independent of A given B?
4. (2 points) Is G independent of E given A and F'?
(2 points) Is B independent of F' given C, D, and E? 1

6. (3 points) Give an expression for Pr(d|c) (where d and c are specific values of variables D and
C') in terms of parameters stored in the network?

7. (2 point) Which variables are irrelevant to the query Pr(d|c)?
8. (4 points) What factors are created by variable elimination using order A, B, E, F, G?

9. (2 point) Is there another elimination order with a smaller largest factor?

1.
2.

-~ @

t

Bayesian Networks
No.

Sum the sizes of the conditional probability tables of
Pr(A),Pr(B|A),Pr(C|B),Pr(D|B),Pr(E|B),Pr(F|C,D, E,G),Pr(G|A)
=24+4+4+4+4+32+4=54

No.
No.

. No.

P(d|c) = P(c,d) x P(c)

P(c,d) =Y Pr(c|b)Pr(d|b)Pr(b) = > Pr(c|b) Pr(d|b)sum. Pr(bla) Pr(a)
B

B
Pr(c)=Y_ Pr(c|b) Y _ Pr(bla)Pr(a)
B A

. Relevant variables: A, B, C, D.

Irrelevant variables: E, F, G.

. Factors created: F1(B,G), F2(C,D,E,G), F3(C,D,F,G), F4(C,D,G), F5(C,D)

No.



8 Bayesian Network Structure

Consider a Bayesian network with the following structure:

Does computing P(M|A) depend on:

o P(L|J)?

o P(K|I)?

o P(D|B)?

o P(H|G)?

In the network above, if we decided not to include G in our network, but
still wanted to model the joint distribution of all the other variables, what is
the smallest network structure we could use?

8 Bayesian Network Structure

e No
e Yes
e Yes

e No

Remove node G.
Now node I has parents E, F, H.
Node H has parent, E, F.



1 Bayes’ Nets

I am a professor trying to predict the performance of my class on an exam.
After much thought, it is apparent that the students who do well are those
that studied and do not have a headache when they take the exam. My vast
medical knowledge leads me to believe that headaches can only be caused by
being tired or by having the flu. Studying, the flu, and being tired are pairwise
independent.

a) We will model everything with Boolean variables. F indicates the presence
of the flu, T indicates being tired, H - having a headache, S - studying,
and E - passing the exam. Which of the following three networks best
models the relationships described?

AU A

Figure 1: From left to right, models 1, 2, and 3

b) Why were the other two networks unsatisfactory models? Explain the de-
ficiencies of each in terms of the conditional independence and dependence
relationships they model. Which one of the remaining models represents
an equivalent joint probability table as the best model, given that the
description of the relationships was accurate?

¢) I found that tiredness and having the flu each have a small impact on the
likelihood of studying (small because MIT students are so tough). Draw a
network that expresses this connection. Compute its complexity and the
complexity of the network you choose in part a). Give two reasons why

the original network is superior, despite the small improvement this new
network gives in predictive power.

d) Leslie got the flu. Using model 3, compute the probability that she will
fail the exam, in terms of values that are available in the conditional
probability tables stored at each node.

e) Michael passed the exam. Using model 3, compute the probability that he
studied, in terms of values that are available in the conditional probability
tables stored at each node.



1

Bayes’ Nets

I am a professor trying to predict the performance of my class on an exam.
After much thought, it is apparent that the students who do well are those
that studied and do not have a headache when they take the exam. My vast
medical knowledge leads me to believe that headaches can only be caused by
being tired or by having the flu. Studying, the flu, and being tired are pairwise
independent.

a)

. z{? Y

b)

Model 3 best models the relationship.

Figure 1: From left to right, models 1, 2, and 3

The first model makes flu, tiredness, and studying only conditionally in-
dependent (the first two conditioned on H and the third conditioned on
E). The second model has the right relations, but many unnecessary de-
pendencies. If the situation is accurately described in the problem, it will
produce the same joint distribution as the third model because the de-
pendencies will have no effect (for example, P(S|F,T) will be the same as

P(S)).

If we assume that we need to hold only one value, P(X = true) to repre-
sent the apriori probability of a single variable, then we need 2" entries for
a conditional probability table for a node with n parents. So, the original
network has a complexity of 1+ 1+ 144 +4 = 11 and the new network
has a complexity of 1+ 1+ 4+ 4+ 4 = 14. So, the size of the information



necessary to store the network has increased by about 27%, but we I
gained only a little more accuracy.

P(S|E)

P(E|S)

= Y P(=E|H,S,F)P(H,S|F)

= HZP(—‘E|H,S)P(H,S|F)

- %P(ﬁmH,S)P(HIF,S)P(SIF)

- %:P(—'E|H,S)P(H|F;S)P(5)
H

= P(~E|H,S)P(S)>_ P(H|F,T)P(T)

H,S T

P(EIS)P(S)
P(E)

> P(E|S,H)P(H)
H

> P(E|S,H)>  P(H|F,T)P(F)P(T)
H F,T

> P(E|S,H)P(S)>_ P(H|F,T)P(F)P(T)
H,S F,T



Given is a simplified version of a network that could be used to diagnose patients arriving at a clinic. Each
node in the network corresponds to some condition of the patient. This network demonstrates some cuasality
links. For example, both brain tumor and serum calcium increase the chances of a coma. A brain tumor
can cause severe headaches and a comma, and so on.

P(a)= 0.2

P(bla) = 0.8

P(cla) = 0.2 P(bja) = 0.2

P(c|a) = 0.05

P(e|b.c) = 0.8 Shee\f:drf :(gu;) = gg
P(elb.c) = 0.8 aches (d|b) = 0.

P(elb.c) =08
P(e|b.c) = 0.05

1. (2 points) What is the joint distribution P(a,b,c,d,e) 7 give a factorized expression, according to the
network’s structure.

2. (3 points) Give an example of ’explaining away’ in this Bayes net.

3. (5 points) One of your patients experiences severe headaches, had a comma and serum calcium. What
is the probability of him having cancer ? show full dereivation of this probability, as well as the
numerical result.

4. (5 points) What is the probability of a positive serum calcium given severe headaches? Derive this
expression. Specifically, start from the joint distribution, factorize it and use variable elimination, so
as to lower calculation cost. (Note: a numerical result is not required here.)

5. (15 points) Write code for sampling joint and conditional probabilities in Bayes nets. Use the stan-

dard name “sample” for your code. The command line arguments should be: FILE-NAME (VAR- http / /
NAME=value,VAR-NAME=..) (VAR-NAME=value, VAR-NAME=..). (In case you are to use a non-

standard language, be sure to included a README file with runtime instructions.) WWW.cs.cmu.ed U/afS/
The first argument specifies the file describing the Bayes net. The second group of arguments gives Cs_ch.edu/a Cademic/
the required variables’ values, whose probability we’d like to evaluate. Several such values can be

specified, using a comma separator within the same round brackets. The last group of arguments gives ClaSS/1538 1'507/

the variables’ values that the requested probability is conditined on (again, multiple values can be WWW /hW5 /

specified, using a comma separator and bounding brackets). If the second group is empty (unfilled
brackets), this means we are looking for a joint probability expression, that is conditioned on nothing.



Problem 3 - Bayes Nets (35 points)

Given is a simplified version of a network that could be used to diagnose patients arriving at a clinic. Each
node in the network corresponds to some condition of the patient. This network demonstrates some cuasality
links. For example, both brain tumor and serum calcium increase the chances of a coma. A brain tumor
can cause severe headaches and a comma, and so on.

P(a) = 0.2

Meta-
static
cancer

P(bla) = 0.8
P(c|a) = 0.2 P(bja) = 0.2

P(c|a) = 0.05

Severe
head-
aches

P(db) = 0.8

P(e|b.c) = 0.8
P(db) = 0.6

P(e|b.c) = 0.8
P(elb.c) = 0.8
P(e|b.c) = 0.05

1. (2 points) What is the joint distribution P(a,b,c,d,e) ? give a factorized expression, according to the
network’s structure.

2. (3 points) Give an example of ’explaining away’ in this Bayes net.

3. (5 points) One of your patients experiences severe headaches, had a comma and serum calcium. What
is the probability of him having cancer ? show full dereivation of this probability, as well as the
numerical result.

4. (5 points) What is the probability of a positive serum calcium given severe headaches? Derive this
expression. Specifically, start from the joint distribution, factorize it and use variable elimination, so
as to lower calculation cost. (Note: a numerical result is not required here.)

http://
www.cs.cmu.edu/afs/
cs.cmu.edu/academic/
class/15381-s07/
www/hw5/



Solution 3

L. p(a,b,c,d, e) = p(ela, b, c,d)p(a, b, c,d) = p(ela, b, ¢, d)p(d|a, b, c)p(c|b, a)p(bla) = p(e|a, c)p(d|b)p(cla)p(bla)p(a)

2. e is a common child to b and c¢. In this structure, two causes “compete” to “explain” the observed
data. Hence b and ¢ become conditionally dependent given that their common child, e, is observed,
even though they are marginally independent. If we know that e (comma) is true and also b (brain
tumor) is true, this reduces the probability that ¢ (serum calcium) is true.

__ P(a,c,d,e) > pPla,B,cd,e)

P(ald, e,c) = P(c,d,e) ZfB P(a,B,c,d,e) (1)
x ZP(a, B,c,d,e) (2)

B
Y P(a)P(Bla)P(cla)P(d|B)P(e|B,c) (3)

B

x P(a)P(c\a)ZP(B|a)P(d\B)P(e|B,c) (4)

B
o P(a)P(cla) (P(bla)P(d|b)P(elb, c) + P(bla) P(d|bP(elb, c))) (5)
x0.2x0.2(0.8x0.8x0.8+0.2x0.6x0.8) (6)
 0.02432 (7)

_ __ P(a,c,d,e) > pP(a,B,cd,e)
Plald,e,c) = P(c,d,e) Z;B P(a,B,c,d,e) ®)
x> P(a,B,c,de) (9)
B
x Z P(a)P(Bla)P(c|la)P(d|B)P(e|B,c) (10)
B

o P(a)P(cla) ZP(@|B,C)P(B|&)P(d|B) (11)

B
o P(a)P(c|a) (P(e|b,c)P(bla)P(d|b) + P(e|b, c)P(bla)P(d|b)) (12)
x 0.8 x 0.05(0.8 x 0.2 x 0.8 4+ 0.8 x 0.8 x 0.6) (13)
 0.02048 (14)
Plald,e,0) = S, P(a,B,c,d,e) 0.02432 054 (15)

S, P(a,B,c,de) + 5.5 P(a B,c,de) 002432 +0.02048



Likewise,

Thus,

P(c|d)

24 P(A)P(c|A) Yo P(BIA)P(d|B) + 32 4 P(A)P(c|A) Y- P(BIA)P(d|B)

P(Ca d) _ ZA,B,E P(A,B,(j, d» E)

P(C|d) N P(d) B ZA7B7C,E P(Avacv da E)

x Y P(A B,cd,E)
A,B.E

o Y P(A)P(B|A)P(c|A)P(d|B)P(E|B,c)
A,B,E

o > P(A)P(c|A) > P(B|A)P(d|B) Y P(E|B,c)
B E

A

x Y P(A)P(c|A) > P(B|A)P(d|B)
A B

P(cld) o< > P(A)P(c|A) Y P(B|A)P(d|B)
A B

2.4 P(A)P(c|A) 5.5 P(BJA)P(d|B)

(16)

(17)

(18)

(19)

(20)

(21)

(22)



