
Planning, Execution & Learning: Heuristic Simmons, Veloso : Fall 20011

Planning, Execution & LearningPlanning, Execution & Learning
1. Heuristic Search Planning1. Heuristic Search Planning

Reid Simmons

Planning, Execution & Learning: Heuristic Simmons, Veloso : Fall 20012

Heuristic Search PlanningHeuristic Search Planning
• Basic Idea

– Automatically Analyze Domain/Problems to Derive Heuristic
Estimates to Guide Search

• Decisions
– How to evaluate search states
– How to use the evaluations to guide search
– How to generate successor states

• Resurgence in Total-Order, State-Space Planners
– Best such planner (FF) dominates other types
– Still a hot topic for research

Planning, Execution & Learning: Heuristic Simmons, Veloso : Fall 20013

Search HeuristicsSearch Heuristics
• Admissible

– What?
– Why Important?

• Informed
– What?
– Why Important?

Planning, Execution & Learning: Heuristic Simmons, Veloso : Fall 20014

Evaluating Search StatesEvaluating Search States
• Basic Idea

– Solve a Relaxed Form of the Problem;
Use as Estimate for Original Problem

• Approaches
– Assume complete subgoal independence
– Assume no negative interactions
– Assume limited negative interactions

Planning, Execution & Learning: Heuristic Simmons, Veloso : Fall 20017

HSP (Bonet & Geffner, 1997)HSP (Bonet & Geffner, 1997)
• Heuristic State-Space Planner

– Can Do Either Progression or Regression

• Relax Problem by Eliminating “Delete” Lists
– Essentially compute transitive closure of actions, starting at

initial state
– Cost of literal is stage/level at which first appears
– Continue until no new literals are added
– Similar to GraphPlan’s forward search

Planning, Execution & Learning: Heuristic Simmons, Veloso : Fall 20018

Computing Costs of LiteralsComputing Costs of Literals
On(C, A) On(A, Table) On(B, Table) Handempty Clear(C) Clear(B)0 0 0 0 0 0

Pick(C, A) PickT(B)

On(C, A) On(A, Table) On(B, Table) Handempty Clear(C) Clear(B)0 0 0 0 0 0

Holding(C) Holding(B) Clear(A)1 1 1

PutT(C) Put(C, A) Put(C, B) PutT(B) Put(B, A) Put(B, C) PickT(A)

On(C, Table) On(C, B) On(B, A) On(B, C) Holding(A)2 2 2 2 2

PickT(C) Pick (C, B) Pick(B, A) Pick(B, C) Put(A, B) Put(A, C)

On(A, B) On(A, C)3 3

On(A, B) & On(B, C) Estimate: 5 Actually: 6
On(A, C) & On(C, B) Estimate: 5 Actually: 4

Planning, Execution & Learning: Heuristic Simmons, Veloso : Fall 20019

HSP HeuristicsHSP Heuristics
• Max

– Cost of action is maximum over costs of preconditions
– Admissible, but not very informed

• Sum
– Cost of action is sum of precondition costs
– Informed, but not admissible

• H2

– Solve for pairs of literals
– Take maximum cost over all pairs
– Informed, and claimed to be admissible

Planning, Execution & Learning: Heuristic Simmons, Veloso : Fall 200113

Heuristic Search StrategiesHeuristic Search Strategies
• Best-First

• A*

• Weighted A*
– H(s) = cost-so-far(s) + W * estimated-cost(s)
– Not admissible, but tends to perform much better than A*

• Hill-Climbing
– Rationale: Heuristics tend to be better discriminators

amongst local alternatives than as global (absolute) estimate
– Random “restarts” when stuck
– Perfect opportunity for transformational operators

Planning, Execution & Learning: Heuristic Simmons, Veloso : Fall 200114

“Enforced” Hill Climbing“Enforced” Hill Climbing
• Used to Avoid “Wandering” on “Plateaus” or in

Local Minima
– Perform breadth-first search until find some descendant state

whose heuristic value is less than the current state

• Shown to be Very Effective
– Especially when search space is pruned to eliminate actions

that are “unlikely” to lead to goal achievement

• Used by FF

Informed search algorithms

Chapter 4, Sections 1–2

Chapter 4, Sections 1–2 1

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yes∗ Yes∗ No Yes, if l ≥ d Yes
Time bd+1 b"C

∗/ε# bm bl bd

Space bd+1 b"C
∗/ε# bm bl bd

Optimal? Yes∗ Yes No No Yes∗

Chapter 3 71

Outline

♦ Best-first search

♦ A∗ search

♦ Heuristics

Chapter 4, Sections 1–2 2

Review: Tree search

function Tree-Search(problem, fringe) returns a solution, or failure
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node←Remove-Front(fringe)
if Goal-Test[problem] applied to State(node) succeeds return node

fringe← InsertAll(Expand(node,problem), fringe)

A strategy is defined by picking the order of node expansion

Chapter 4, Sections 1–2 3

Best-first search

Idea: use an evaluation function for each node
– estimate of “desirability”

⇒ Expand most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A∗ search

Chapter 4, Sections 1–2 4

Romania with step costs in km

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329
80
199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Chapter 4, Sections 1–2 5

Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

E.g., hSLD(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Chapter 4, Sections 1–2 6

Greedy search example

Arad
366

Chapter 4, Sections 1–2 7

Greedy search example

Zerind

Arad

Sibiu Timisoara
253 329 374

Chapter 4, Sections 1–2 8

Greedy search example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara
329 374

366 176 380 193

Chapter 4, Sections 1–2 9

Greedy search example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Chapter 4, Sections 1–2 10

Properties of greedy search

Complete??

Chapter 4, Sections 1–2 11

Properties of greedy search

Complete?? No–can get stuck in loops, e.g., with Oradea as goal,
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time??

Chapter 4, Sections 1–2 12

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space??

Chapter 4, Sections 1–2 13

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space?? O(bm)—keeps all nodes in memory

Optimal??

Chapter 4, Sections 1–2 14

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space?? O(bm)—keeps all nodes in memory

Optimal?? No

Chapter 4, Sections 1–2 15

A∗ search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost to goal from n
f(n) = estimated total cost of path through n to goal

A∗ search uses an admissible heuristic
i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n.
(Also require h(n) ≥ 0, so h(G) = 0 for any goal G.)

E.g., hSLD(n) never overestimates the actual road distance

Theorem: A∗ search is optimal

Chapter 4, Sections 1–2 16

A∗ search example

Arad
366=0+366

Chapter 4, Sections 1–2 17

A∗ search example

Zerind

Arad

Sibiu Timisoara
447=118+329 449=75+374393=140+253

Chapter 4, Sections 1–2 18

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Chapter 4, Sections 1–2 19

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea

447=118+329 449=75+374

646=280+366 415=239+176
Rimnicu Vilcea

Craiova Pitesti Sibiu
526=366+160 553=300+253417=317+100

671=291+380

Chapter 4, Sections 1–2 20

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Chapter 4, Sections 1–2 21

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea
418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Chapter 4, Sections 1–2 22

Optimality of A∗ (standard proof)

Suppose some suboptimal goal G2 has been generated and is in the queue.
Let n be an unexpanded node on a shortest path to an optimal goal G1.

G

n

G2

Start

f(G2) = g(G2) since h(G2) = 0

> g(G1) since G2 is suboptimal

≥ f(n) since h is admissible

Since f(G2) > f(n), A∗ will never select G2 for expansion

Chapter 4, Sections 1–2 23

Optimality of A∗ (more useful)

Lemma: A∗ expands nodes in order of increasing f value∗

Gradually adds “f -contours” of nodes (cf. breadth-first adds layers)
Contour i has all nodes with f = fi, where fi < fi+1

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

Chapter 4, Sections 1–2 24

Properties of A∗

Complete??

Chapter 4, Sections 1–2 25

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time??

Chapter 4, Sections 1–2 26

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time?? Exponential in [relative error in h × length of soln.]

Space??

Chapter 4, Sections 1–2 27

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time?? Exponential in [relative error in h × length of soln.]

Space?? Keeps all nodes in memory

Optimal??

Chapter 4, Sections 1–2 28

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time?? Exponential in [relative error in h × length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand fi+1 until fi is finished

A∗ expands all nodes with f(n) < C∗

A∗ expands some nodes with f(n) = C∗

A∗ expands no nodes with f(n) > C∗

Chapter 4, Sections 1–2 29

Proof of lemma: Consistency

A heuristic is consistent if

n
c(n,a,n’)

h(n’)

h(n)

G

n’

h(n) ≤ c(n, a, n′) + h(n′)

If h is consistent, we have

f(n′) = g(n′) + h(n′)

= g(n) + c(n, a, n′) + h(n′)

≥ g(n) + h(n)

= f(n)

I.e., f(n) is nondecreasing along any path.

Chapter 4, Sections 1–2 30

Admissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =??
h2(S) =??

Chapter 4, Sections 1–2 31

Admissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =?? 6
h2(S) =?? 4+0+3+3+1+0+2+1 = 14

Chapter 4, Sections 1–2 32

Dominance

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search

Typical search costs:

d = 14 IDS = 3,473,941 nodes
A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

Given any admissible heuristics ha, hb,

h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb

Chapter 4, Sections 1–2 33

Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then h2(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

Chapter 4, Sections 1–2 34

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n2)
and is a lower bound on the shortest (open) tour

Chapter 4, Sections 1–2 35

Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h
– incomplete and not always optimal

A∗ search expands lowest g + h
– complete and optimal
– also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems

Chapter 4, Sections 1–2 36

	HeuristicPlan
	chapter04a

