# Planning, Execution & Learning 1. Heuristic Search Planning

**Reid Simmons** 

Planning, Execution & Learning: Heuristic

1

Simmons, Veloso : Fall 2001

**Heuristic Search Planning** 

- Basic Idea
  - Automatically Analyze Domain/Problems to Derive Heuristic Estimates to Guide Search
- Decisions
  - How to evaluate search states
  - How to use the evaluations to guide search
  - How to generate successor states
- Resurgence in Total-Order, State-Space Planners
  - Best such planner (FF) dominates other types
  - Still a hot topic for research



- Admissible
  - What?
  - Why Important?
- Informed
  - What?
  - Why Important?

**Evaluating Search States** 

- Basic Idea
  - Solve a Relaxed Form of the Problem;
    Use as Estimate for Original Problem
- Approaches
  - Assume *complete* subgoal independence
  - Assume no *negative* interactions
  - Assume *limited* negative interactions

HSP (Bonet & Geffner, 1997)

- Heuristic State-Space Planner
  - Can Do Either Progression or Regression
- Relax Problem by Eliminating "Delete" Lists
  - Essentially compute transitive closure of actions, starting at initial state
  - Cost of literal is stage/level at which first appears
  - Continue until no new literals are added
  - Similar to *GraphPlan's* forward search



# **HSP Heuristics**

- Max
  - Cost of action is *maximum* over costs of preconditions
  - Admissible, but not very informed
- Sum
  - Cost of action is *sum* of precondition costs
  - Informed, but not admissible
- H<sup>2</sup>
  - Solve for *pairs* of literals
  - Take maximum cost over all pairs
  - Informed, and claimed to be admissible

# **Heuristic Search Strategies**

- Best-First
- A\*
- Weighted A\*
  - H(s) = cost-so-far(s) + W \* estimated-cost(s)
  - Not admissible, but tends to perform much better than A\*

#### • Hill-Climbing

- Rationale: Heuristics tend to be better discriminators amongst local alternatives than as global (absolute) estimate
- Random "restarts" when stuck
- Perfect opportunity for transformational operators

# "Enforced" Hill Climbing

- Used to Avoid "*Wandering*" on "Plateaus" or in Local Minima
  - Perform breadth-first search until find *some* descendant state whose heuristic value is less than the current state
- Shown to be Very Effective
  - Especially when search space is pruned to eliminate actions that are "unlikely" to lead to goal achievement
- Used by FF

#### INFORMED SEARCH ALGORITHMS

Chapter 4, Sections 1–2

Chapter 4, Sections 1–2 1

# Summary of algorithms

| Criterion | Breadth-  | Uniform-                         | Depth- | Depth-            | Iterative |
|-----------|-----------|----------------------------------|--------|-------------------|-----------|
|           | First     | Cost                             | First  | Limited           | Deepening |
| Complete? | $Yes^*$   | Yes*                             | No     | Yes, if $l \ge d$ | Yes       |
| Time      | $b^{d+1}$ | $b^{\lceil C^*/\epsilon \rceil}$ | $b^m$  | $b^l$             | $b^d$     |
| Space     | $b^{d+1}$ | $b^{\lceil C^*/\epsilon \rceil}$ | bm     | bl                | bd        |
| Optimal?  | $Yes^*$   | Yes                              | No     | No                | $Yes^*$   |

## Outline

- $\diamondsuit$  Best-first search
- $\diamondsuit \ \ \mathsf{A}^* \ \mathsf{search}$
- $\diamondsuit$  Heuristics

#### **Review:** Tree search

```
\begin{aligned} & \textbf{function Tree-Search}(\textit{problem, fringe}) \textbf{ returns a solution, or failure} \\ & \textit{fringe} \leftarrow \text{INSERT}(\text{MAKE-NODE}(\text{INITIAL-STATE}[\textit{problem}]), \textit{fringe}) \\ & \textbf{loop do} \\ & \textbf{if fringe is empty then return failure} \\ & \textit{node} \leftarrow \text{REMOVE-FRONT}(\textit{fringe}) \\ & \textbf{if GOAL-TEST}[\textit{problem}] \textbf{ applied to STATE}(\textit{node}) \textbf{ succeeds return node} \\ & \textit{fringe} \leftarrow \text{INSERTALL}(\text{EXPAND}(\textit{node, problem}), \textit{fringe}) \end{aligned}
```

A strategy is defined by picking the order of node expansion

#### Best-first search

Idea: use an evaluation function for each node - estimate of "desirability"

 $\Rightarrow$  Expand most desirable unexpanded node

#### Implementation:

*fringe* is a queue sorted in decreasing order of desirability

Special cases: greedy search

 $A^*$  search

#### Romania with step costs in km



#### Greedy search

Evaluation function h(n) (heuristic)

= estimate of cost from n to the closest goal

E.g.,  $h_{SLD}(n) = \text{straight-line distance from } n$  to Bucharest

Greedy search expands the node that appears to be closest to goal









Complete??

 $\label{eq:complete} \underbrace{ \mbox{Complete} ?? \mbox{No-can get stuck in loops, e.g., with Oradea as goal, } \\ \mbox{Iasi} \rightarrow \mbox{Neamt} \rightarrow \mbox{Iasi} \rightarrow \mbox{Neamt} \rightarrow \\ \mbox{Complete in finite space with repeated-state checking} \end{cases}$ 

Time??

<u>Time</u>??  $O(b^m)$ , but a good heuristic can give dramatic improvement

Space??

<u>Time</u>??  $O(b^m)$ , but a good heuristic can give dramatic improvement

<u>Space</u>??  $O(b^m)$ —keeps all nodes in memory

Optimal??

<u>Time</u>??  $O(b^m)$ , but a good heuristic can give dramatic improvement

<u>Space</u>??  $O(b^m)$ —keeps all nodes in memory

**Optimal**?? No

#### $A^*$ search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach nh(n) = estimated cost to goal from nf(n) = estimated total cost of path through n to goal

A\* search uses an admissible heuristic i.e.,  $h(n) \leq h^*(n)$  where  $h^*(n)$  is the **true** cost from n. (Also require  $h(n) \geq 0$ , so h(G) = 0 for any goal G.)

E.g.,  $h_{\mathrm{SLD}}(n)$  never overestimates the actual road distance

Theorem:  $A^*$  search is optimal





#### A<sup>\*</sup> search example









### Optimality of A<sup>\*</sup> (standard proof)

Suppose some suboptimal goal  $G_2$  has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal  $G_1$ .



 $f(G_2) = g(G_2) \qquad \text{since } h(G_2) = 0$ >  $g(G_1) \qquad \text{since } G_2 \text{ is suboptimal}$  $\geq f(n) \qquad \text{since } h \text{ is admissible}$ 

Since  $f(G_2) > f(n)$ , A<sup>\*</sup> will never select  $G_2$  for expansion

#### Optimality of A<sup>\*</sup> (more useful)

Lemma:  $A^*$  expands nodes in order of increasing f value<sup>\*</sup>

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with  $f = f_i$ , where  $f_i < f_{i+1}$ 



Complete??

<u>Complete</u>?? Yes, unless there are infinitely many nodes with  $f \leq f(G)$ <u>Time</u>??

<u>Complete</u>?? Yes, unless there are infinitely many nodes with  $f \leq f(G)$ 

<u>Time</u>?? Exponential in [relative error in  $h \times$  length of soln.]

Space??

<u>Complete</u>?? Yes, unless there are infinitely many nodes with  $f \leq f(G)$ 

<u>Time</u>?? Exponential in [relative error in  $h \times$  length of soln.]

Space?? Keeps all nodes in memory

Optimal??

<u>Complete</u>?? Yes, unless there are infinitely many nodes with  $f \leq f(G)$ 

<u>Time</u>?? Exponential in [relative error in  $h \times$  length of soln.]

Space?? Keeps all nodes in memory

<u>Optimal</u>?? Yes—cannot expand  $f_{i+1}$  until  $f_i$  is finished

- $\mathsf{A}^*$  expands all nodes with  $f(n) < C^*$
- $\mathsf{A}^*$  expands some nodes with  $f(n)=C^*$
- $\mathsf{A}^*$  expands no nodes with  $f(n) > C^*$

#### **Proof of lemma: Consistency**

A heuristic is consistent if

$$h(n) \le c(n, a, n') + h(n')$$

If h is consistent, we have

$$f(n') = g(n') + h(n')$$
  
=  $g(n) + c(n, a, n') + h(n')$   
 $\geq g(n) + h(n)$   
=  $f(n)$ 

I.e., f(n) is nondecreasing along any path.



#### Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) =$  number of misplaced tiles  $h_2(n) =$ total Manhattan distance (i.e., no. of squares from desired location of each tile) **Start State Goal State** 

 $\frac{h_1(S) = ??}{h_2(S) = ??}$ 

#### Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) =$  number of misplaced tiles  $h_2(n) =$ total Manhattan distance (i.e., no. of squares from desired location of each tile) **Start State Goal State** 

 $\frac{h_1(S) = ?? \ 6}{h_2(S) = ?? \ 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1 = 14}$ 

#### Dominance

If  $h_2(n) \ge h_1(n)$  for all n (both admissible) then  $h_2$  dominates  $h_1$  and is better for search

Typical search costs:

 $\begin{array}{ll} d = 14 & \mathsf{IDS} = \texttt{3,473,941} \ \mathsf{nodes} \\ & \mathsf{A}^*(h_1) = \texttt{539} \ \mathsf{nodes} \\ & \mathsf{A}^*(h_2) = \texttt{113} \ \mathsf{nodes} \\ d = 24 & \mathsf{IDS} \approx \texttt{54,000,000,000} \ \mathsf{nodes} \\ & \mathsf{A}^*(h_1) = \texttt{39,135} \ \mathsf{nodes} \\ & \mathsf{A}^*(h_2) = \texttt{1,641} \ \mathsf{nodes} \end{array}$ 

Given any admissible heuristics  $h_a$ ,  $h_b$ ,

 $h(n) = \max(h_a(n), h_b(n))$ 

is also admissible and dominates  $h_a$ ,  $h_b$ 

#### **Relaxed problems**

Admissible heuristics can be derived from the **exact** solution cost of a **relaxed** version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move **anywhere**, then  $h_1(n)$  gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then  $h_2(n)$  gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

#### Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP) Find the shortest tour visiting all cities exactly once



Minimum spanning tree can be computed in  $O(n^2)$ and is a lower bound on the shortest (open) tour

#### Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h

- incomplete and not always optimal
- $\mathsf{A}^*$  search expands lowest g+h
  - complete and optimal
  - also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems