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Why is Path Planning Hard?

• Time and resource constraints
• Uncertainty about effects of actions
• Uncertainty about environment (e.g., initial state)
• Uncertain sensing / perception
• Other agents / external events can affect goal 

achievement
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Movie courtesy of E. Frazzoli, J. How, J. Leonard, S. Teller
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Movie courtesy of R. Tedrake
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Motion Planning

Start
position

Goal
position



7

Complete Motion Planning
• Formal statement of motion planning problem:

– Compute a collision-free path for a rigid or articulated 
moving object among static (or dynamic) obstacles

• Ideally we desire a “complete” motion planner:
– If a solution exists, the planner is guaranteed to return it
– Otherwise, planner indicates that no solution exists

• CMP is known to be computationally difficult
– In general it requires exponential running time in the 

number of DOFs (articulation, # of obstacles etc.)
– … Even with access to perfect, global information!

Motion Planning

Start
position

Goal
position

Is this point (x, y) along 
the path in collision?

Is this point (x, y) along 
the path in collision?
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A Point Robot?
• Can’t fit much robot into a zero-area point …

?

?

?

• Configuration space: the set of configurations of the robot
• Size of C-Space depends on degrees of freedom of robot

Path Planning Representations
• Configuration space
• Topological vs. Metric?
• Discrete vs. continuous spaces?

• Graph-based representations:
– Visibility graphs
– Voronoi diagrams
– Probabilistic roadmaps
– Rapidly-exploring randomized trees
– Distinctiveness surfaces

• Metric representations:
– Potential fields
– Numerical potential fields
– Value functions
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Configuration Space
• The set of configurations of the robot
• Size of C-Space depends on degrees of freedom of robot

Intuition

RobotRobot 
origin

Obstacle

• Suppose robot can move only by translating in 2D
• How can it move in the presence of an obstacle?

• How to describe infeasible placements of robot origin?
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Infeasibility Under Translation

Robot

Robot origin

Locus of infeasible
placements of
robot origin

Obstacle

What if Robot can also Rotate?

RobotRobot at +π/6
orientation

Robot origin

Obstacle



11

Infeasibility under 3-DOF Motion

RobotRobot at +π/6
orientation

Robot origin Locus of infeasible
placements of origin
with robot at +π/6 
orientation

Obstacle

Configuration Space
For a robot with k total motion DOFs, C-space is a 
coordinate system with one dimension per DOF 

(Latombe 1991)

In C-space, a robot pose is simply a point!
… and a workspace obstacle is a complex shape 
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Robot

obst

obst

obst

obst

x
y

θ
C-obst

C-obstC-obst

C-obst

Robot
Path is swept volume Path is space curve

Workspace
( x, y )

C-space
( x, y, θ )

Motion Planning Transformation

C-obst

C-obst

C-obst

C-obst

C-obst

Some example configuration spaces:

6D C-space
(x, y, z, ψ, θ, φ)

3D C-space
(x, y, θ)

3D C-space
(α, β, γ)

α
β γ

• Define space with one dimension
per robot motion (or pose) DOF

• Map robot to a point in this space
• C-space = all robot configurations
• C-obstacle = locus of infeasible 
configurations due to obstacle

2n-D C-space
(φ1, ψ1, φ2, ψ2, . . . , φ n, ψ n)

Translation +
rotation in 2D

Translation +
rotation in 3D

3-link 
arm

Molecule with n
fixed-length bonds

C-space Examples
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Visibility Graph Algorithm

Start
position

Goal
position

1. Create Configuration Space

Start
position

Goal
position

Vehicle translates,
but no rotation
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2. Map From Continuous Problem to 
Graph Search: Create Visibility Graph
Start

position

Goal
position

Start
position

Goal
position

2. Map From Continuous Problem to 
Graph Search: Create Visibility Graph
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Start
position

Goal
position

3. Find Shortest Path

Start
position

Goal
position

3. Find Shortest Path
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Start
position

Goal
position

Resulting Solution

Start
position

Goal
position

A Visibility Graph is a Kind of Roadmap
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Start
position

Goal
position

What are some other types of roadmaps?
A Visibility Graph is a Kind of Roadmap

• What do we use as edge weights? Metric edge lengths, turning times
• Memory usage?  Quadratic in # obstacle vertices
• Running time?  O(|E| + |V| log |V|)
• Can we optimize by omitting reflex vertices? No.
• What major assumption have we made about the robot?  It’s a point.

Voronoi Diagrams
Lines equidistant from CSpace obstacles

• The Voronoi Graph is the dual of the Delaunay Triangulation.
• A fast way to construct Voronoi graphs in a polygonal world:
1. Construct a polyhedral world by turning each polygon co-ordinate (x, y) into a polyhedral 

co-ordinate (x, y, (x2 + y2)1/2)
2. Compute the convex hull of this world to get Delaunay triangulation (dual of Voronoi) 
3. Project hull to 2-space, and recover dual 
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Cell-decomposition

Approximate Cell Decomposition Variable-resolution Approximate
Cell Decomposition

Exact  Cell
Decomposition

Example of a Discrete State 
Space 

• Cartesian space
• Configuration space
• Actions take robot from

one state to another
• Objective is to find a

path from the start 
state to the goal state
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Planning as Tree Search

Planning as Tree Search
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Planning as Tree Search

....

Planning as Tree Search

… How can such searching be made effective and efficient?
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Move Generation
• Which state-action pair to consider 

next?
• Shallowest next

– Aka: Breadth-first search
– Guarantees shortest path
– But: storage-intensive

• Deepest next
– Aka: Depth-first search
– Can use minimal storage
– But: no optimality guarantee

Informed Search – A*

Candidate states
reachable through
available actions

… which action
should robot take?
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Informed Search – A*
• Use domain knowledge to bias the search
• Favor actions that might get closer to the goal
• Each state gets assigned an approximate cost 

f(x)= c(x) + h(x)

Cost incurred to here
from the start state
Cost incurred to here
from the start state

Estimated cost from 
here to the goal, aka 
the “heuristic” cost

Estimated cost from 
here to the goal, aka 
the “heuristic” cost

For example:
c(x) = 3, h(x) = ||x-goal|| = sqrt(82+182) = 19.7, so f(x)=22.7

Once the search is done, and we have 
found the goal

• We have a tree that contains a path from the 
start to the goal 

• Follow the parent pointers in the tree and trace 
back from the goal to the root, keeping track of 
which states you pass through

• This set of states constitutes your plan

• To execute the plan, use your PD
controller to face the first state in
the plan, and then drive to it

• Once at the state, face and drive
to the next state
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A problem with plans
• We have a plan that

gets us from the
start    to the goal

• What happens if we
take an action that
causes us to leave
the plan?

1) It’s a problem with planners! 
We should use behaviours!

2) We can replan
3) We can keep a cached conditional plan
4) We can keep a policy

Potential Field Method
• Real-time collision avoidance method [Khatib 1986]
• Construct scalar potential field throughout freespace

Attraction to
goal location

2

2
1

goalatt xxU −=
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Potential Field Method

Attraction to
goal location

Repulsion from
obstacle interiors

Sum

boundary
rep xx

U
−

=
1

Potential Field Method

• Robot moves along negative gradient of potential field

Attraction to
goal location

Repulsion from
obstacle interiors

Sum
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Ideal Potential Field
• We want to construct the potential field so that it:

– Is nearly infinite close to obstacles
– Has a global minimum at the goal (so no local minima)
– Is smooth everywhere
– Does this algebraic method achieve this? No; local minima.

If only life were so easy…

• Initialize all states with value ∞
• Assign cost of 0 to goal state
• Update each state x so that

f(x) = min(f(y) + c(y, x))  
(minimize over neighbors y of x)

• Repeat

• Initialize all states with value ∞
• Assign cost of 0 to goal state
• Update each state x so that

f(x) = min(f(y) + c(y, x))  
(minimize over neighbors y of x)

• Repeat

Numerical Potential Field
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3   3
4   4
5   5

6   6   6
7   7   7

Numbers shown are for an obstacle-induced cost 
of ∞, and a goal-induced cost of 1 unit per grid cell 
(can also make it costly to approach obstacles)
Post-plan: for each state move to cheapest neighbor

This is called
“Regression”
from the goal
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Example Output Value Function

Motion Planning in High 
Dimensional Configuration Spaces

start

GOAL

1. Sample poses in Cfree
2. Add edges between mutually-visible points
3. Perform graph search

1. Sample poses in Cfree
2. Add edges between mutually-visible points
3. Perform graph search

Assumes a controller 
exists to transfer from xt
to xt+1
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PRMs: Pros and Cons
Advantages

1. Probabilistically complete
2. Easily applied to high-dimensional C-spaces
3. Support fast queries (w/ enough preprocessing)

Many success stories in which PRMs were
applied to previously intractable problems

C-obst

C-obst

C-obst

C-obst

C-obst

start

goal

Disadvantages

PRMs don’t work well for some problems:
– Unlikely to sample nodes in narrow passages
– Hard to connect nodes along constraint surfaces

start

goal

C-obst

C-obst

C-obst

C-obst

Rapidly Exploring Random Trees

• Robots have
– inertia and dynamiccs
– limited control authority or limited actuation
– uncertainty

• Rapid replanning is required

• RRTs: Rapidly Exploring Random Trees
– Incremental construction of the roadmap 
– Plans integrate kinodynamic constraints
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RRT

• Build a rapidly-exploring random tree in 
state space (X), starting at sstart

• Stop when tree gets sufficiently close to 
sgoal

Goal
Start

Building an RRT

• To extend an RRT:
– Pick a random point a

in X
– Find b, the node of the 

tree closest to a
– Find control inputs u to 

steer the robot from b
to a

a

b
u
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Building an RRT

• To extend an RRT 
(cont.)
– Apply control inputs 

u for time δ, so robot 
reaches c

– If no collisions occur 
in getting from a to c, 
add c to RRT and 
record u with new 
edge

a

b
u
c

Principle Advantage

• RRT quickly 
explores the state 
space:
– Nodes most likely 

to be expanded are 
those with largest 
Voronoi regions
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State vs. Information Space

• Large covariances can lead to poor plan 
execution

• Large covariances can lead to poor plan 
execution
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GOAL

start

Motion Planning in Information Space

1. Sample distributions where p(x∈ Cobst)<ε
2. Add edges between points where 

p(x∈ Cobst)<ε along path
3. Perform graph search

1. Sample distributions where p(x∈ Cobst)<ε
2. Add edges between points where 

p(x∈ Cobst)<ε along path
3. Perform graph search

Problem: Edge Construction

?
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GOAL

start

The Belief Roadmap Algorithm

1. Sample means from Cfree, build graph and 
transfer functions

2. Propagate covariances by performing graph 
search

1. Sample means from Cfree, build graph and 
transfer functions

2. Propagate covariances by performing graph 
search

ζ1 ζ2

ζ3

ζ5

ζ6

ζ4

ζ8

ζ7

ζ9

ζ10
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Anticipated 
dimension: 30m
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Recap: Design Decisions
• How is your map described? This will have an

impact on the state space for your planner
– Is it a list of polygons?
– Is it a grid map?

• What are you trying to optimize?
– The fastest path (time)?
– The shortest path (wear and tear)?
– The lowest-energy path (battery usage)?

• What kind of search should you use?
– Can you formulate a reasonably good heuristic?
– If so, then maybe A* is a good idea

• Physical intuition can yield useful algorithms
– Potential field method


