6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

6.034 Notes: Section 5.1

Slide5.1.1
Search plays akey rolein many parts of Al. These algorithms provide the conceptual backbone of 6.034 Artificial Intelligence
almost every approach to the systematic exploration of alternatives.

We will start with some background, terminology and basic implementation strategies and then cover + Bigidea: Search allows exploring alternatives
four classes of search algorithms, which differ along two dimensions: Firgt, is the difference between
uninformed (also known as blind) search and then informed (also known as heuristic) searches.

Informed searches have access to task-specific information that can be used to make the search process * Background

more efficient. The other difference is between any path searches and optimal searches. Optimal + Uninformed vs Informed
searches are looking for the best possible path while any-path searches will just settle for finding some + Any Path vs Optimal Path
solution. * Implementation and Performance
Ho+ Sping 02+ 1 4
Slide5.1.2

Trees and Graphs
Bis parent of C
root Cis child of B
Als ancestor of C
C is descendant of A

The search methods we will be dealing with are defined on trees and graphs, so we need to fix on some

Tree terminology for these structures:

Terminal

(leaf)

. A treeis made up of nodes and links (circles and lines) connected so that there are no loops
(cycles). Nodes are sometimes referred to as vertices and links as edges (thisis more common in
talking about graphs).

. A tree hasaroot node (where the tree "starts"). Every node except the root has a single par ent
(akadirect ancestor). More generally, an ancestor node is a node that can be reached by repeatedly
going to a parent node. Each node (except the ter minal (akaleaf) nodes) has one or more children
(akadirect descendants). More generally, a descendant node is a node that can be reached by
repeatedly going to achild node.

PSRz g

Slide5.1.3 Trees and Graphs

Bis parent of C
root Cis child of B
Als ancestor of C
Cis descendant of A

A graph is also a set of nodes connected by links but where loops are alowed and a node can have
multiple parents. We have two kinds of graphsto deal with: directed graphs, where the links have Tree
direction (akin to one-way streets).

Terminal

(leaf)

Directed
Graph

(one-way streets)

s

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (1 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Trees and Graphs

Tree

Terminal

(leaf)

Bis parent of C
Cis child of B

Ais ancestor of C

C is descendant of A

Directed Undirected
Graph Graph
(one-way streets) (two-way streets)

pe Spring 02+ 4

¢

Slide5.1.5

Graphs are everywhere; for example, think about road networks or airline routes or computer networks.
In al of these cases we might be interested in finding a path through the graph that satisfies some
property. It may be that any path will do or we may be interested in a path having the fewest "hops" or
aleast cost path assuming the hops are not al equivalent, etc.

Examples of Graphs

Planning actions

(graph of possible states
of the world)
PutConA

PutConB

PutBonC
R ——

| PutConA

PutAonC

oo

p+ Spring (26

¢

Slide5.1.7

One general approach to problem solving in Al is to reduce the problem to be solved to one of
searching a graph. To use this approach, we must specify what are the states, the actions and the goal

test.

A state is supposed to be complete, that is, to represent all (and preferably only) the relevant aspects of
the problem to be solved. So, for example, when we are planning the cheapest round-the-world flight
plan, we don't need to know the address of the airports, knowing the identity of the airport is enough.
The address will be important, however, when planning how to get from the hotel to the airport. Note
that, in general, to plan an air route we need to know the airport, not just the city, since some cities

have multiple airports.

We are assuming that the actions are deter ministic, that is, we know exactly the state after the action is
performed. We a so assume that the actions are discr ete, so we don't have to represent what happens
while the action is happening. For example, we assume that aflight gets us to the scheduled destination
and that what happens during the flight does not matter (at least when planning the route).

Note that we've indicated that (in general) we need atest for the goal, not just one specific goal state.

Slide5.1.4

And, undirected graphs where the links go both ways. Y ou can think of an undirected graph as
shorthand for a graph with directed links going each way between connected nodes.

Examples of Graphs

Airline Routes

- Sping02 -6 (E

Slide5.1.6

However, graphs can also be much more abstract. Think of the graph defined as follows: the nodes
denote descriptions of a state of the world, e.g., which blocks are on top of what in ablocks scene, and
where the links represent actions that change from one state to the other.

A path through such agraph (from a start node to agoal node) isa"plan of action" to achieve some
desired goal state from some known starting state. It is this type of graph that is of more general
interest in Al.

Problem Solving Paradigm

+ What are the states? (All relevant aspects of the problem)
+ Arrangement of parts (to plan an assembly)
+ Positions of trucks (to plan package distribution)
+ City (to plan a trip)
+ Set of facts (e.g. to prove geometry theorem)
+ What are the actions (operators)? (Deterministic and discrete)
+ Assemble two parts
+ Move a truck to a new position
* Fly to a new city
+ Apply a theorem to derive new fact
+ What is the goal test? (Conditions for success)
+ All parts in place
+ All packages delivered
+ Reached destination city
+ Derived goal fact

o~ Sping02 -7 (E

So, for example, we might be interested in any city in Germany rather than specifically Frankfurt. Or, when proving a theorem, all we care is about knowing one fact in our current data

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (2 of 52)3/13/2007 8:49:44 PM

base of facts. Any fina set of facts that contains the desired fact is a proof.

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

In principle, we could also have multiple starting states, for example, if we have some uncertainty about the starting state. But, for now, we are not addressing issues of uncertainty

either in the starting state or in the result of the actions.

Graph Search as Tree Search

+ Trees are directed graphs without cycles and with nodes having <= 1 parent

+We can turn graph search problems into tree search problems by:
« replacing undirected links by 2 directed links

+ avoiding loops in path (or keeping track of visited nodes globally)

pe Spring (28

¢

Slide5.1.9

Y ou can see an example of this converting from a graph to atree here. If we assume that Sisthe start
of our search and we are trying to find a path to G, then we can walk through the graph and make
connections from every node to every connected node that would not create a cycle (and stop whenever
we hit G). Note that such atree has aleaf node for every non-looping path in the graph starting at S.

Also note, however, that even though we avoided loops, some nodes (the colored ones) are duplicated
inthetree, that is, they were reached along different non-looping paths. This means that a complete

search of thistree might do extrawork.

The issue of how much effort to place in avoiding loops and avoiding extra visits to nodesis an
important one that we will revisit later when we discuss the various search algorithms.

Terminology

+ State - Used to refer to the vertices of the underlying graph that is being searched,
that is, states in the problem domain, for example, a city, an arrangement of blocks or
the arrangement of parts in a puzzle.

Search Node - Refers to the vertices of the search tree which is being generated by
the search algorithm. Each node refers to a state of the world; many nodes may refer
to the same state. Importantly, a node implicitly represents a path (from the start state
of the search to the state associated with the node). Because search nodes are part of
a search tree, they have a unique ancestor node (except for the root node).

Hp Sping 2+ 10

¢

Slide5.1.8

Note that trees are a subclass of directed graphs (even when not shown with arrows on the links). Trees
don't have cycles and every node has asingle parent (or is the root). Cycles are bad for searching,
since, obviously, you don't want to go round and round getting nowhere.

When asked to search a graph, we can construct an equivalent problem of searching atree by doing two
things: turning undirected links into two directed links; and, more importantly, making sure we never
consider apath with aloop or, even better, by never visiting the same node twice.

Graph Search as Tree Search

+ Trees are directed graphs without cycles and with nodes having <= 1 parent

+We can turn graph search problems (from S to G) into tree search
problems by:
+ replacing undirected links by 2 directed links

+ avoiding loops in path (or keeping track of visited nodes globally)
) €D,
‘ P,

=

fo+ Spring 02+ Q

Slide5.1.10

One important distinction that will help us keep things straight is that between a state and a search
node.

A stateis an arrangement of the real world (or at least our model of it). We assume that thereis an
underlying "real" state graph that we are searching (although it might not be explicitly represented in
the computer; it may be implicitly defined by the actions). We assume that you can arrive at the same
real world state by multiple routes, that is, by different sequences of actions.

A search node, on the other hand, is a data structure in the search algorithm, which constructs an
explicit tree of nodes while searching. Each node refers to some state, but not uniquely. Note that a
node also corresponds to a path from the start state to the state associated with the node. This follows
from the fact that the search algorithm is generating atree. So, if we return anode, we're returning a
path.

6.034 Notes: Section 5.2

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (3 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.2.1 Classes of Search

So, let's ook at the different classes of search algorithms that we will be exploring. The simplest class Class Name Operation

isthat of the uninformed, any-path algorithms. In particular, we will look at depth-first and breadth- Any Path Depth-First Systematic exploration of whole tree
first search. Both of these algorithms basically look at all the nodes in the search tree in a specific Uninformed Breadth-First until a goal node is found.

order (independent of the goal) and stop when they find the first path to agoal state.

Ip+ Spring 2+ 1 (E
Slide5.2.2
Classes of Search
Class Naiiis Operation The next class of methods are infor med, any-path agorithms. The key idea here is to exploit a task
- - - specific measure of goodness to try to either reach the goal more quickly or find a more desirable goal
Any Path Depth-First Systematic exploration of whole tree Sate.
Uninformed Breadth-First until a goal node is found. :
Any Path Best-First Uses heuristic measure of goodness
Informed of a state, e.g. estimated distance to goal.
tp » Spring 02 +2 (E
Slide5.2.3
Classes of Search
Next, we look at the class of uninformed, .Optl mal agorithms. These methods guarante;e findi ng the Clags Niifig Operation
"best" path (as measured by the sum of weights on the graph edges) but do not use any information pY——— DentFiret P —————
e . ny Pa epth-Firs ystematic exploration of whole tree
beyond what i in the graph definition. Uninformed Breadth-First until a goal node is found.
Any Path Best-First Uses heuristic measure of goodness
Informed of a state, e.g. estimated distance to goal.
Optimal Uniform-Cost Uses path “length” measure.
Uninformed Finds “shortest’ path.
tp~ Spring 02+ 3 (E

Slide5.2.4

Finally, welook at informed, optimal agorithms, which also guarantee finding the best path but which

exploit heuristic ("rule of thumb") information to find the path faster than the uninformed methods.

Classes of Search
Class Name Operation
Any Path Depth-First Systematic exploration of whole tree
Uninformed Breadth-First until a goal node is found.
Any Path Best-First Uses heuristic measure of goodness
Informed of a state, e.g. estimated distance to goal.
Optimal Uniform-Cost Uses path “length” measure.
Uninformed Finds “shortest” path.
Optimal A* Uses path “length” measure and heuristic
Informed Finds “shortest’ path

fp » Spring 02 + 4

file:///CJ/Documents%20and%20Settings/Administrator/My%

...aching/6.034/07/l essons/Chapter5/search-handout-07.html (4 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.2.5 . .
Simple Search Algorithm
The search strategies we will look at are all instances of a common search algorithm, which is shown A search node is a path from some state X to the start state, e.g., (XBAS)
here. The basic ideaiis to keep alist (Q) of nodes (that is, partial paths), then to pick one such node from The state of a search node is the most recent state of the path, e.g. X.
o ! . . Let Q be a list of search nodes, e.g. (XBAS) (CBAS)...).

Q, seeif it reachesthe goal and ot_hervx_nse extend that path to its neighbors and add them back to Q. Let S be the start state.
Except for details, that's al thereistoiit. " . .

1. Initialize Q with search node (S) as only entry; set Visited = (S)
Note, by the way, that we are keeping track of the states we have reached (visited) and not entering them 2. IfQis empty, fail. Else, pick some search node N from Q
in Q more than once. Thiswill certainly keep us from ever looping, no matter how the underlying graph 3. If state(N) is a goal, return N (we’ve reached the goal)
is connected, since we can only ever reach a state once. We will explore the impact of this decision later. 4. (Otherwise) Remove N from Q

5. Find all the descendants of state(N) not in Visited and create all the one-

step extensions of N to each descendant.

6. Add the extended paths to Q; add children of state(N) to Visited
7. Gotostep2.
tp+ Spring 025 (E
. . Slide5.2.6
Simple Search Algorithm
/T\hseatrcth ”‘;de isa phath g°'f“ fﬁme Sf‘e X “; “‘tetm'f*t;‘a‘e’tﬁ-g-» (XXB AS) The key questions, of course, are which entry to pick off of Q and how precisely to add the new paths
€ stale of a search node Is the most recent state of the patn, €.g. A. H H B : :
Let Q be a st of search nodes, e.q. (X BAS) (CBAS) ... back onto Q. Different choices for these operations produce the various search strategies.
Let S be the start state.
1. Initialize Q with search node (S) as only entry; set Visited = (S)
2. IfQis empty, fail. Else, pick some search node N from Q
3. If state(N) is a goal, return N (we've reached the goal)
4. (Otherwise) Remove N from Q
5. Find all the children of state(N) not in Visited and create all the one-step
extensions of N to each descendant.
6. Add the extended paths to Q; add children of state(N) to Visited
7. Gotostep2.
Critical decisions:
Step 2: picking N from Q
Step 6: adding extensions of Nto Q o~ Spring 12-6 ‘(E
Slide5.2.7 . .
Implementing the Search Strategies
At this point, we are ready to actually look at a specific search. For example, depth-first search always Denthefirst:
looks at the deepest node in the search tree first. We can get that behavior by: epin-Tirst:
Pick first element of Q
. picking the first element of Q asthe node to test and extend. Add path extensions o front of Q
. adding the new (extended) paths to the FRONT of Q, so that the next path to be examined
will be one of the extensions of the current path to one of the descendants of that node's
state.
One good thing about depth-first search is that Q never gets very big. We will look at thisin more
detail later, but it'sfairly easy to see that the size of the Q depends on the depth of the search tree and
not on its breadth.
tip+ Spring 02 -7 (E
Implementing the Search Strategies Slide5.2.8
Depth-first: Breadth-first is the other major type of uninformed (or blind) search. The basic approach isto once
Pick first element of Q again pick the first element of Q to examine BUT now we place the extended paths at the back of Q.

This means that the next path pulled off of Q will typically not be a descendant of the current one, but

Add path extensions to front of Q rather one at the same level in tree.

Breadth-first:
Pick first element of Q Note that in breadth-first search, Q gets very big because we postpone looking at longer paths (that go
Add path extensions to end of Q to the next level) until we have finished looking at all the paths at one level.

We'll look at how to implement other search strategiesin just a bit. But, first, letslook at some of the
more subtle issues in the implementation.

peses g

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (5 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.2.9
Testing for the Goal
One subtle point is where in the algorithm one tests for success (that is, the goal test). There are two
plausible points: one iswhen a path is extended and it reaches a goal, the other is when a path is pulled « This algorithm stops (in step 3) when state(N) = G or, in general, when
off of Q. We have chosen the latter (testing in step 3 of the algorithm) because it will generalize more state(N) satisfies the goal test.
readily to optimal searches. However, testing on extension is correct and will save some work for any- + We could have performed this test in step 6 as each extended path is added
path searches. to Q. This would catch termination earlier and be perfectly correct for the

searches we have covered so far.

* However, performing the test in step 6 will be incorrect for the optimal
searches. We have chosen to leave the test in step 3 to maintain uniformity
with these future searches.

t+ Spring 02+9 (E
. Slide 5.2.10
Terminology
At this point, we need to agree on more terminology that will play akey rolein the rest of our discussion
¢ Visited - a state M is first visited when a path to M first gets added to Q. of search.
In general, a state is said to have been visited if it has ever shown up in
asearch node in Q. The intuition is that we have briefly “visited” them Let's start with the notion of Visited as opposed to Expanded. We say astate is visited when a path that

to place them on Q, but we have not yet examined them carefully. reaches that state (that is, anode that refers to that state) gets added to Q. So, if the state is anywhere in

any nodein Q, it has been visited. Note that thisis true even if no path to that state has been taken off of
Q.

- Soring 02+ 10 (E

Slide5.2.11

Terminology
A state M is Expanded when a path to that state is pulled off of Q. At that point, the descendants of M

are visited and the paths to those descendants added to the Q. + Visited - a state M is first visited when a path to M first gets added to Q.

In general, a state is said to have been visited if it has ever shown up in
a search node in Q. The intuition is that we have briefly “visited” them
to place them on Q, but we have not yet generated its descendants.

+ Expanded - a state M is expanded when it is the state of a search node
that is pulled off of Q. At that point, the descendants of M are visited
and the path that led to M is extended to the eligible descendants. In
principle, a state may be expanded multiple times. We sometimes refer
to the search node that led to M (instead of M itself) as being expanded.
However, once a node is expanded we are done with it; we will not need
to expand it again. In fact, we discard it from Q.

Slide5.2.12

Terminology

Please try to get this distinction straight; it will save you no end of grief.

+ Visited - a state M is first visited when a path to M first gets added to Q.
In general, a state is said to have been visited if it has ever shown up in
a search node in Q. The intuition is that we have briefly “visited” them
to place them on Q, but we have not yet examined them carefully.

+ Expanded - a state M is expanded when it is the state of a search node
that is pulled off of Q. At that point, the descendants of M are visited
and the path that led to M is extended to the eligible descendants. In
principle, a state may be expanded multiple times. We sometimes refer
to the search node that led to M (instead of M itself) as being expanded.
However, once a node is expanded we are done with it; we will not need
to expand it again. In fact, we discard it from Q.

+ This distinction plays a key role in our discussion of the various search
algorithms; study it carefully.

- Soring 02+ 12 4

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (6 of 52)3/13/2007 8:49:44 PM

Slide5.2.13

In our description of the simple search algorithm, we made use of a Visited list. Thisisalist of all the
states corresponding to any node ever added to Q. As we mentioned earlier, avoiding nodes on the
visited list will certainly keep us from looping, even if the graph hasloopsin it. Note that this
mechanism is stronger than just avoiding loops locally in every path; thisis aglobal mechanism across
all paths. In fact, it is more general than aloop check on each path, since by definition aloop will
involve visiting a state more than once.

But, in addition to avoiding loops, the Visited list will mean that our search will never expand a state
more than once. The basic ideais that we do not need to search for a path from any state to the goal more
than once. If we did not find a path the first time we tried it, one is not going to materialize the second
time. And, it saves work, possibly an enormous amount, not to look again. More on this later.

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Visited States

Keeping track of visited states generally improves time efficiency when
searching graphs, without affecting correct Note, | , that

substantial additional space may be required to keep track of visited states.

If all we want to do is find a path from the start to the goal, there is no
advantage to adding a search node whose state is already the state of
another search node.

Any state reachable from the node the second time would have been
reachable from that node the first time.

Note that, when using Visited, each state will only ever have at most one
path to it (search node) in Q.

+ We'll have to revisit this issue when we look at optimal searching.

wsn e g

Slide5.2.14
Implementation Issues: The Visited list
A word on implementation: Although we speak of a"Visited list", it is never agood ideato keep track of
visited states using alist, since we will continually be checking to see if some particular stateis on the
list, which will require scanning the list. Instead, we want to use some mechanism that takes roughly
constant time. |If we have a data structure for the states, we can simply include a"flag" bit indicating
whether the state has been visited. In general, one can use a hash table, adata structure that allows us to
check if some state has been visited in roughly constant time, independent of the size of the table. Still,
no matter how fast we make the access, this table will still require additional space to store. We will see
later that this can make the cost of using a Visited list prohibitive for very large problems.

+ Although we speak of a Visited list, this is never the preferred
implementation.

+ Ifthe graph states are known ahead of time as an explicit set, then space is
allocated in the state itself to keep a mark; which makes both adding to
Visited and checking if a state is Visited a constant time operation.

+ Alternatively, as is more common in Al, if the states are generated on the
fly, then a hash table may be used for efficient detection of previously
visited states.

+ Note that, in any case, the incremental space cost of a Visited list will be
proportional to the number of states — which can be very high in some

problems.
fp+ Soring 02+ 14. (E
Slide5.2.15 .
Terminology
Another key concept to keep straight is that of a heuristic value for astate. Theword heuristic generally + Heuristic - The word generally refers to a “rule of thumb,” something that

refersto a"rule of thumb", something that's helpful but not guaranteed to work. may be helpful in some cases but not always. Generally held to be in

contrast to “guaranteed” or “optimal.”

tp- Spring 02 + 15 (E

. Slide5.2.16
Terminology
+ Heuristic - The word generally refers to a “rule of thumb,” something that

may be helpful in some cases but not always. Generally held to be in
contrast to “guaranteed” or “optimal.”

A heuristic function has similar connotations. It refers to afunction (defined on a state - not on a path)
that may be helpful in guiding search but which is not guaranteed to produce the desired outcome.
Heuristic searches generally make no guarantees on shortest paths or best anything (even when they are
called best-first). Nevertheless, using heuristic functions may still provide help by speeding up, at least
on average, the process of finding agoal.

+ Heuristic function - In search terms, a function that computes a value for a
state (but does not depend on any path to that state) that may be helpful in
guiding the search. There are two related forms of heuristic guidance that
one sees:

- Soring 02+ 16 4

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (7 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.2.17 .
Terminology
If we can get some estimate of the "distance” to a goal from the current node and we introdL_Jce a + Heuristic - The word generally refers to a “rule of thumb,” something that
preference for nodes closer to the goal, then there is agood chance that the search will terminate more may be helpful in some cases but not always. Generally held to be in
quickly. Thisintuition is clear when thinking about "airline" (as-the-crow-flies) distance to guide a contrast to “guaranteed” or “optimal.”
search in Euclidean space, but it generalizes to more abstract situations (as we will see). + Heuristic function - In search terms, a function that computes a value for a
state (but does not depend on any path to that state) that may be helpful in
guiding the search.
Estimated distance to goal - this type of heuristic function depends on the
state and the goal. The classic example is straight-line distance used as an
estimate for actual distance in a road network. This type of information can
help increase the efficiency of a search.
tp~ Spring 02 + 17 (E
. . Slide5.2.18
Implementing the Search Strategies
) Best-first (also known as "greedy") search is a heuristic (informed) search that uses the value of a
Depth-first: heuristi . . . g A " "
_ euristic function defined on the states to guide the search. Thiswill not guarantee finding a"best" path,
Pick first element of Q for example, the shortest path to agoal. The heuristic is used in the hope that it will steer usto a quick
Add path extensions to front of Q completion of the search or to arelatively good goal state.
Breadth-first: i . i L
S " Best-first search can be implemented as follows: pick the "best" path (as measured by heuristic value of
ek irstelement of the node's state) from all of Q and add the extensions somewhere on Q. So, at any step, we are always
Add path extensions to end of Q examining the pending node with the best heuristic value.
Best-first:
Pick “best’ (measured by heuristic value of state) element of Q Note that, in the worst case, this search will examine al the same paths that depth or breadth first would
add) o o examine, but the order of examination may be different and therefore the resulting path will generally be
path extensions anywhere in Q (it may be more efficient to keep the Q ! - K . . R
ordered in some way so as to make it easier to find the “best” element). different. Best-first has akind of breadth-first flavor and we expect that Q will tend to grow more than in
depth-first search.
fIp+ Spring 02+ 18 (E

Slide5.2.19
Implementation Issues: Finding the best node
Note that best-first search requires finding the best node in Q. Thisis aclassic problem in computer
science and there are many different approaches that are appropriate in different circumstances. One

. L i L There are many possible approaches to finding the best node in Q.
simple method is simply to scan the Q completely, keeping track of the best element found. Surprisingly,

this simple strategy turns out to be the right thing to do in some circumstances. A more sophisticated) 2":{.‘”"3() t: ﬁ,"i_'m”tehSt :::el :
. - " . orting Q and picking the first elemen
strategy, such as keeping a data structure called a"priority queue", is more often the correct approach. s Ruaging fhsspsoriady:daing Tsarisd insertions

We will pursue thisissue further when we talk about optimal searches. Keepi L
. eeping Q as a priority queue

+ Which of these is best will depend among other things on how many
children nodes have on average. We will look at this in more detail later.

tp» Spring 02 + 19 (E
. . Slide5.2.20
Worst Case Running Time
Max Time oc Max #Visited Let's think abit about the worst case running time of the searches that we have been discussing. The
i oo des [. =3 actual running time, of course, will depend on details of the computer and of the software
* Theumuet ofsidies In.te seare = b=2 implementation. But, we can roughly compare the various algorithms by thinking of the number of nodes

space may be exponential in some . X R .

“depth” parameter, e.g. number of added to Q. The running time should be roughly proportional to this number.

actions in a plan, number of movesin |q=1
agame. In Al we usually think of a"typical" search space as being atree with uniform branching factor b and
depth d. The depth parameter may represent the number of stepsin aplan of action or the number of
d=2 moves in agame. The branching factor reflects the number of different choices that we have at each step.
It is easy to see that the number of states in such atree grows exponentially with the depth.
0 0 00

d is depth
b is branching factor

bd< (b1 -1)/ (b-1) < be*!
states in tree

- Soring 02+ 20 (E

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (8 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.2.21

In atree-structured search space, the nodes added to the search Q will simply correspond to the visited
states. In the worst case, when the states are arranged in the worst possible way, all the search methods
may end up having to visit or expand all of the states (up to some depth). In practice, we should be able
to avoid this worst case but in many cases one comes pretty close to this worst case.

Worst Case Space
Max Q size = Max (#Visited - #Expanded)

0 visited
@ expanded

0000

Depth First max Q size
(b-1)d~bd

- Soring 02+ 22

4

Slide5.2.23

The situation for breadth-first search is much different than that for depth-first search. Here the worst
case happens after we've visited all the nodes at depth d-1. At that point, al the nodes at depth d have
been visited and none expanded. So, the Q has size bd, that is, a size exponential in d.

Note that, in the worst case, best-first behaves as breadth-first and has the same space requirements.

Cost and Performance of Any-Path Methods

Searching a tree with branching factor b and depth d
(without using a Visited list)

Search Worst Worst Fewest Guaranteed to
Method Time Space states? find path?
Depth-First pa+ bd No Yes'
Breadth-first b+t pd Yes Yes
Best-First past * b No Yes'

*If there are no infinitely long paths in the search space
** Best-First needs more time to locate the best node in Q

Worst case time is proportional to number of nodes added to Q
Worst case space is proportional to maximal length of Q

- Spring 02+ 24

¢

Worst Case Running Time
Max Time oc Max #Visited

+ The number of states in the search
space may be exponential in some
“depth” parameter, e.g. number of
actions in a plan, number of moves in
agame.

All the searches, with or without
visited list, may have to visit each
state at least once, in the worst case.
So, all searches will have worst case
running times that are at least
proportional to the total number of
states and therefore exponential in
the “depth” parameter.

d=0

d=1

AN

d is depth
b is branching factor

b < (b1 =1) / (b - 1) < b#*
states in tree

wsaa

Slide5.2.22

In addition to thinking about running time, we should also think about the memory space required for
searches. The dominant factor in the space requirements for these searches is the maximum size of the
search Q. The size of the search Q in atree-structured search space is simply the number of visited states
minus the number of expanded states.

For adepth-first search, we can see that Q holds the unexpanded "siblings" of the nodes along the path
that we are currently considering. In atree, the path length cannot be greater than d and the number of
unexpanded siblings cannot be greater than b-1, so thistells us that the length of Q is aways less than
b*d, that is, the space requirements are linear in d.

Worst Case Space
Max Q size = Max (#Visited - #Expanded)

Q visited
@ expanded

/T/\T\
AAN 4O

Depth First max Q size Breadth First max Q size
(b-1)d~bd be

tp- Spring 02+ 23 (E

Slide5.2.24

This table summarizes the key cost and performance properties of the different any-path search methods.
We are assuming that our state spaceis atree and so we cannot revisit states and a Visited list is useless.

Recall that this analysisis done for searching a tree with uniform branching factor b and depth d.
Therefore, the size of this search space grows exponentially with the depth. So, it should not be
surprising that methods that guarantee finding a path will require exponential time in this situation.
These estimates are not intended to be tight and precise; instead they are intended to convey afeeling for
the tradeoffs.

Note that we could have phrased these results in terms of V, the number of vertices (nodes) in the tree,
and then everything would have worst case behavior that islinear in V. We phrase it the way we do
because in many applications, the number of nodes dependsin an exponential way on some depth
parameter, for example, the length of an action plan, and thinking of the cost as linear in the number of
nodes is misleading. However, in the algorithms literature, many of these algorithms are described as
requiring time linear in the number of nodes.

There are two points of interest in this table. One is the fact that depth-first search requires much less
space than the other searches. Thisisimportant, since space tends to be the limiting factor in large

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (9 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

problems (more on this later). The other is that the time cost of best-first search is higher than that of the others. Thisis due to the cost of finding the best node in Q, not just the first
one. Wewill also look at thisin more detail |ater.

Slide5.2.25
Cost and Performance of Any-Path Methods
Remember that we are assuming in this slide that we are searching atree, so states cannot be visited Searching a tree with branching factor b and depth d
more than once - so the Visited list is completely superfluous when searching trees. However, if we were (using a Visited list)
to use aVisited list (even implemented as a constant-time access hash table), the only thing that seems to Search Worst Worst Fewest Guaranteed to
changein this table isthat the worst-case space requirements for all the searches go up (and way up for Method Time Space states? find path?
depth-first search). That does not seem to be very useful! Why would we ever use a Visited list? Depth-First e+t bd b |No Yes'
Breadth-first bt p b | Yes Yes
Best-First P+t = b bt No Yes
*If there are no infinitely long paths in the search space
** Best-First needs more time to locate the best node in Q
Worst case time is proportional to number of nodes added to Q
Worst case space is proportional to maximal length of Q (and Visited list)
lp+ Spring 02425 (E
Slide5.2.26
States vs Paths
Aswe mentioned earlier, the key observation is that with a Visited list, our worst-case time performance
islimited by the number of statesin the search space (since you visit each state at most once) rather than
the number of paths through the nodes in the space, which may be exponentially larger than the number
of states, as this classic example shows. Note that none of the pathsin the tree have aloop in them, that
- is, no path visits a state more than once. The Visited list is away of spending space to limit thistime
penalty. However, it may not be appropriate for very large search spaces where the space requirements
would be prohibitive.
< o/\‘ <)
I+ Spring 02+ 25 '(E
Slide5.2.27

Space

the final fronti
So far, we have been treating time and space in parallel for our algorithms. It is tempting to focus on (the final frontier)

time as the dominant cost of searching and, for real-time applications, it is. However, for large off-line

applications, space may be the limiting factor. » Inlarge search problems, memory is often the limiting factor.

* Imagine searching a tree with branching factor 8 and depth 10. Assume a
If you do aback of the envel ope cal culation on the amount of space required to store a tree with node requires just 8 bytes of storage. Then, breadth-first search might
branching factor 8 and depth 10, you get a very large number. Many real applications may want to require up to
explore bigger spaces. (2%)10x 22=2% bytes = 8,000 Mbytes = 8Gbytes

b

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (10 of 52)3/13/2007 8:49:44 PM

Space Slide5.2.28

(the final frontier)

+ In large search problems, memory is often the limiting factor.

+ Imagine hing a tree with L hing factor 8 and depth 10. Assume a
node requires just 8 bytes of storage. Then, breadth-first search might
require up to

(2919 2= 2% bytes = 8,000 Mbytes = 8Gbytes

+ One strategy is to trade time for memory. For example, we can emulate
breadth-first search by repeated applications of depth-first search, each up
to a preset depth limit. This is called progressive deepening search (PDS):

1. ¢
2. Do DFS to max depth C. If path found, return it.
3. Otherwise, increment C and go to 2.

sz

Slide5.2.29

Depth-first search has one strong point - its limited space requirements, which are linear in the depth of
the search tree. Aside from that there's not much that can be said for it. In particular, it is susceptible to
"going off the deep-end”, that is, chasing very deep (possibly infinitely deep) paths. Because of thisit
does not guarantee, as breadth-first, does to find the shallowest goal states - those requiring the fewest
actions to reach.

Progressive Deepening Search Slide5.2.30

Best of Both Worlds

+ Depth-First Search (DFS) has small space requirements (linear in depth),
but has major problems:

+ DFS can run forever in search spaces with infinite length paths

« DFS does not g tee of finding shall t goal

+ Breadth-First Search (BFS) g tees finding shall t goal, even in
the presence of infinite paths, but is has one great problem:

+ BFS requires a great deal of space (exponential in depth)

- Soring 02+ 30 (E

Slide5.2.31

Progressive-deepening search, on the other other hand, has both limited space requirements of DFS and
the strong optimality guarantee of BFS. Great! No?

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

One strategy for enabling such open-ended searches, which may run for avery long time, is Progressive
Deepening Search (aka I terative Deepening Search). The basic ideais to simulate searcheswith a
breadth-like component by a succession of depth-limited depth-first searches. Since depth-first has
negligible storage requirements, this is a clean tradeoff of time for space.

Interestingly, PDS is more than just a performance tradeoff. It actually represents a merger of two
algorithms that combines the best of both. Let'slook at that alittle more carefully.

Progressive Deepening Search
Best of Both Worlds

Depth-First Search (DFS) has small space requirements (linear in depth),
but has major problems:

+ DFS can run forever in search spaces with infinite length paths

+ DFS does not guarantee finding shallowest goal

tp- Spring 02+ 29 (E

Breadth-first search on the other hand, does guarantee finding the shallowest goal, but at the expense of
space requirements that are exponential in the depth of the search tree.

Progressive Deepening Search
Best of Both Worlds

Depth-First Search (DFS) has small space requirements (linear in depth),
but has major problems:

+ DFS can run forever in search spaces with infinite length paths

+ DFS does not guarantee of finding shallowest goal

Breadth-First Search (BFS) gt tees finding shall t goal, even in
the presence of infinite paths, but is has one great problem:

+ BFS requires a great deal of space (exponential in depth)

Progressive Deepening Search (PDS) has the advantages of DFS and
BFS.

+ PDS has small space requirements (linear in depth)

+« PDSg tees finding shall t goal

tp- Spring 02 + 31 (E

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (11 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Progressive Deepening Search

Isn’t Progressive Deepening (PDS) too expensive?

IpSoring 02+ 32

4

Slide5.2.33

In small graphs, yesit iswasteful. But, if we really are faced with an exponentially growing space (in the
depth), then it turns out that the work at the deepest level dominates the total cost.

Progressive Deepening Search

+ Isn’t Progressive Deepening (PDS) too expensive?
In exponential trees, time is dominated by deepest search.

For example, if branching factor is 2, then the number of nodes at depth
d is 24 while the total number of nodes in all previous levels is 2¢-1, so
the difference between looking at whole tree versus only the deepest
level is at worst a factor of 2 in performance.

241

- Soring 02+ 34

4

Slide 5.2.35

One can derive an estimate of the ratio of the work done by progressive deepening to that done by a
single depth-first search: (b+1)/(b-1). This estimate isfor the average work (averaging over al possible :
searches in the tree). As you can see from the table, this ratio approaches one as the branching factor

increases (and the resulting exponential explosion gets worse).

Slide5.2.32

At first sight, most people find PDS horrifying. Isn't progressive deepening really wasteful ? It looks at
the same nodes over and over again...

Progressive Deepening Search

Isn’t Progressive Deepening (PDS) too expensive?
In exponential trees, time is dominated by deepest search.

tp~ Spring 012+ 23 (E

Slide5.2.34

It is easy to see this for binary trees, where the number of nodes at level d is about equal to the number of
nodes in the rest of the tree. The worst-case time for BFS at level d is proportional to the number of
nodes at level d, while the worst case time for PDS at that level is proportional to the number of nodesin
the whole tree which is almost exactly twice those at the deepest level. So, in the worst case, PDS (for
binary trees) does no more than twice as much work as BFS, while using much less space.

Thisisaworst case analysis, it turns out that if we try to look at the expected case, the situation is even
better.

Progressive Deepening Search

Compare the ratio of average time spent on PDS with average time spent
on a single DFS with the full depth tree:

(Avg time for PDS)/(Avg time for DFS) ~ (b+1)/(b-1)

b ratio
2 3

3 2

5 15
25 1.08
100 |1.02

PSS g

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (12 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

. . Slide5.2.36
Progressive Deepening Search
For many difficult searches, progressive deepening isin fact the only way to go. There are also

+ Compare the ratio of average time spent on PDS with average time spent essi i i i i .
o3 oingle DFS with the full depth iee: zgggve deepening versions of the optimal searches that we will see later, but that's beyond our

(Avg time for PDS)/(Avg time for DFS) ~ (b+1)/(b-1)
Progressive deepening is an effective strategy for difficult searches.

ratio

o|w(N o
[N

15
25 1.08
100 | 1.02

sz ®

6.034 Notes: Section 5.3

Slide5.3.1 Depth-First

We will now step through the any-path search methods looking at their implementation in terms of the Pick first element of Q; Add path extensions to front of Q
simple agorithm. We start with depth-first search using a Visited list.

The table in the center shows the contents of Q and of the Visited list at each time through the loop of Q Visited
the search agorithm. The nodesin Q are indicated by reversed paths, blueis used to indicate newly
added nodes (paths). On theright is the graph we are searching and we will label the state of the node
that is being extended at each step.

ala|lw|v|—

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

s g

. Slide5.3.2
Depth-First
') Thefirst step isto initialize Q with asingle node corresponding to the start state (Sin this case) and the
Pick first element of Q; Add path extensions to front of Q

Visited list with the start state.

Q Visited
®) S

G|l |w (N[

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

s

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (13 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.3.3
Depth-First
We pick the first element of Q, which isthat initial node, remove it from Q, extend its path to its -) .
descendant states (if they have not been Visited) and add the resulting nodes to the front of Q. We also Pk first element of Q; Add path extensions to front of Q

add the states corresponding to these new nodes to the Visited list. So, we get the situation on line 2.

Note that the descendant nodes could have been added to Q in the other order. This would be absolutely Q Visited
valid. We will typically add nodes to Q in such away that we end up visiting states in al phabetical order, (8) S
when no other order is specified by the algorithm. Thisis purely an arbitrary decision. (AS)(BS) AB,S

We then pick the first node on Q, whose state is A, and repeat the process, extending to paths that end at
C and D and placing them at the front of Q.

a|ls|lw | (N|=

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

tp- Spring012+3 (E

. Slide5.34
Depth-First
; _ We pick the first node, whose state is C, and note that there are no descendants of C and so no new nodes
Pick first element of Q; Add path extensions to front of Q

to add.

Q Visited
s s
(AS)(BS) A,B,S

(CAS)(DAS)(BS) |CDBAS

G|l |lw | N|=

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

tp~ Spring 012« 4 (E

Slide5.3.5 ;
Depth-First
We pick the first node of Q, whose state is D, and consider extending to states C and G, but C is on the o)
Pick first element of Q; Add path extensions to front of Q

Visited list so we do not add that extension. We do add the path to G to the front of Q.

Depth-First

Pick first element of Q; Add path extensions to front of Q

Q Visited
1| s
2 [(A9)(BY) AB,S
3 [(CAS)(DAS)(BS) |CDBAS
4 [(DAS)(BS) CDBAS
5 [(GDAS)(BS) G,CDBAS

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

tp~ Spring 02 -6 4

Slide5.3.6

Q Visited
1| s
2 (AS)(BS) A,B,S
3 [(CAS)(DAS)(BS) |CDBAS
4 |(DAS)(BS) C,DBAS
5

Added paths in blue

We show the paths in reversed order; the node's state is the first entry.

tp- Spring 0125 (E

We pick the first node of Q, whose state is G, the intended goal state, so we stop and return the path.

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (14 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.3.7

The final path returned goes from Sto A, then to D and then to G.

Depth-First

Another (easier?) way to see it

Numbers indicate order pulled off of Q (expanded)

Dark blue fill = Visited & Expanded
Light gray fill = Visited

tp~ Spring 028

4

Slide5.3.9

In this view, we introduce a left to right biasin deciding which nodes to expand - thisis purely arbitrary.
It corresponds exactly to the arbitrary decision of which nodes to add to Q first. Giving this bias, we
decide to expand the node whose state is A, which ends up visiting C and D.

Depth-First

Another (easier?) way to see it
5/6\ A @
3 ‘ A @
@
&

Numbers indicate order pulled off of Q (expanded)

Dark blue fill = Visited & Expanded
Light gray fill = Visited

- Soring 02+ 10

¢

Depth-First

Pick first element of Q; Add path extensions to front of Q

Q Visited
1 /(s) S
2 |[(AS)(BS) AB,S
3 |(CAS)(DAS)(BS) |CDBAS
4 |(DAS)(BS) CDBAS
5 |[cDAS)[BS) G,CDBAS

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

tp- Spring 127 (E

Slide5.3.8

Tracing out the content of Q can get alittle monotonous, although it allows one to trace the performance
of the algorithmsin detail. Another way to visualize simple searchesis to draw out the search tree, as
shown here, showing the result of the first expansion in the example we have been looking at.

Depth-First

Another (easier?) way to see it

; D,
6/.\ g ©

S & ¥

G

D,

Numbers indicate order pulled off of Q (expanded)

Dark blue fill = Visited & Expanded

Light gray fill = Visited

t « Spring 0249 (E

Slide5.3.10

We now expand the node corresponding to C, which has no descendants, so we cannot continue to go
deeper. At this point, one talks about having to back up or backtrack to the parent node and expanding
any unexpanded descendant nodes of the parent. If there were none at that level, we would continue to
keep backing up to its parent and so on until an unexpanded node is found. We declare failure if we
cannot find any remaining unexpanded nodes. In this case, we find an unexpanded descendant of A,
namely D.

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (15 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.3.11

Depth-First

Another (easier?) way to see it

So, we expand D. Note that states C and G are both reachable from D. However, we have aready visited
C, so we do not add a node corresponding to that path. We add only the new node corresponding to the
path to G.

NB: C is not
visited again
Numbers indicate order pulled off of Q (expanded)

Dark blue fill = Visited & Expanded
Light gray fill = Visited

fp+Spring 02+ 14 (E

Slide5.3.12
Depth-First

)) We now expand G and stop.
Another (easier?) way to see it

Thisview of depth-first search is the more common one (rather than tracing Q). In fact, it isin this view

5 ‘ 5 that one can visuaize why it is called depth-first search. The red arrow shows the sequence of
expansions during the search and you can see that it is aways going as deep in the search tree as
possible. Also, we can understand another widely used name for depth-first search, namely

4 backtracking search. However, you should convince yourself that this view isjust adifferent way to

visualize the behavior of the Q-based algorithm.

Numbers indicate order pulled off of Q (expanded)

Dark blue fill = Visited & Expanded
Light gray fill = Visited

- Soring 02+ 12 (E

Slide5.3.13 . . - :
Depth-First (without Visited list)
We can repeat the depth-first process without the Visited list and, as expected, one sees the second path o)
Pick first element of Q; Add path extensions to front of Q

to C added to Q, which was blocked by the use of the Visited list. I'll leave it as an exercise to go through

the steps in detail. Q
. A) i . . 1 ©)

Note that in the absence of a Visited list, we still require that we do not form any paths with loops, so if 2 AS)BS)

we have visited a state along a particular path, we do not re-visit that state again in any extensions of the

path. 3 (CAS)(DAS)(BS)
4 (DAS)(BS)
5 (CDAS)(GDAS)(BS)
6 (GDAS)|BS)

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.
Do not extend a path to a state if the resulting path would have a loop.

tp- Spring 02 + 13 (E

. Slide5.3.14
Breadth-First
Pick firstelement of Q; Add path extensions to end of Q Let'slook now at breadth-first search. The difference from depth-first search is that new paths are added

to the back of Q. We start as with depth-first with the initial node corresponding to S.

Q Visited
S) S

o|la|s|w| |~

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

- Spring 02+ 14 (E

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (16 of 52)3/13/2007 8:49:44 PM

Slide5.3.15

We pick it and add pathsto A and B, as before.

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Breadth-First

Pick first element of Q; Add path extensions to end of Q

Q Visited
s S
(AS)(BS) ABS

o|la|ps|lw| (o=

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

wsa

. Slide5.3.16
Breadth-First
.) We pick the first node, whose stateis A, and extend the path to C and D and add them to Q (at the back)
Pick first element of Q; Add path extensions to end of Q

and here we see the difference from depth-first.

Q Visited
©) S
(AS)(BS) ABS
(BS)(CAS)(DAS) CDBAS

1
2
3
4
5
6

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

- Soring 02+ 16 (E

Slide5.3.17

Now, thefirst nodein Q is the path to B so we pick that and consider its extensionsto D and G. Since D

isaready Visited, we ignore that and add the path to G to the end of Q.

Breadth-First

Breadth-First

Pick first element of Q; Add path extensions to end of Q

Q Visited
1 () s
2 [(AS)(BS) ABS
3 [(BS)(CAS)(DAS) CDBAS
4 [(CAS)(DAS)(GBS)* G,CD,BAS
5
6

Added paths in blue

We show the paths in reversed order; the node's state is the first entry.

tp- Spring 02 + 17

4

Slide5.3.18

At this point, having generated a path to G, we would be justified in stopping. But, as we mentioned

SSRGS Yl it DSt Ienderia earlier, we proceed until the path to the goal becomes the first path in Q.

Q Visited
1((S) S
2 |((AS)(BS) ABS
3 |(BS)(CAS)(DAS) CDBAS
4 |(CAS)(DAS)(GBS)* G,CDBAS
5
6

Added paths in blue

We show the paths in reversed order; the node's state is the first entry.
*We could have stopped here, when the first path to the goal was generated.

- Soring 02+ 18 (E

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (17 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.3.19
Breadth-First
We now pull out the node corresponding to C from Q but it does not generate any extensions since C has .)
no descendants. Pick first element of Q; Add path extensions to end of Q
Q Visited
11(S) S
2 [(AS)(BS) ABS
3 [(BS)(CAS)(DAYS) CDBAS
4 |(CAS)(DAS)(GBS) G,CD,BAS
5 [(DAS)(GBS) G,CDBAS
6
Added paths in blue
We show the paths in reversed order; the node's state is the first entry.
*We could have stopped here, when the first path to the goal was generated.
v of
Slide5.3.20
Breadth-First
Pick st element of @; Add path extensions fo end of Q So we pull out the path to D. Its potential extensions are to previously visited states and so we get
nothing added to Q.
Q Visited
11(8) S
2 [(AS)(BS) ABS
3 [(BS)(CAS)(DAS) CDBAS
4 [(CAS)(DAS)(GBS)* G,CD,BAS
5 [(DAS)(GBS) G,CDBAS
6
Added paths in blue
We show the paths in reversed order; the node's state is the first entry.
*We could have stopped here, when the first path to the goal was generated.
womnn
Slide5.3.21
Breadth-First
Finally, we get the path to G and we stop. i)
Pick first element of Q; Add path extensions to end of Q
Q Visited
11(5) S
2 [(AS)(BS) ABS
3 |(BS)(CAS)(DAS) CDBAS
4 |(CAS)(DAS)(GBS) G,CDBAS
5 [(DAS)(GBS) G,CDBAS
6 [(GBS) G,CD,BAS
Added paths in blue
We show the paths in reversed order; the node's state is the first entry.
*We could have stopped here, when the first path to the goal was generated.
pomnn g
Slide5.3.22
Breadth-First
Pick firstelement of Q; Add path extensions to end of Q Note that we foun_d apath with fewer sta@es Fhan we did with depth—.fl rst search fromStoBtoG. In
general, breadth-first search guarantees finding a path to the goal with the minimum number of states.
Q Visited
11(9) S
2 [(AS)(BS) ABS
3 [(BS)(CAS)(DAY) CDBAS
4 [(CAS)(DAS)(GBS)* G,CDBAS
5 [(DAS)(GBS) G,CDBAS
6 [GB9) G,.CDBAS
Added paths in blue
We show the paths in reversed order; the node's state is the first entry.
*We could have stopped here, when the first path to the goal was generated.
womua

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (18 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.3.23
Breadth-First
Here we see the behavior of breadth-first search in the search-tree view. In this view, you can see why it))
is called breadth-first -- it is exploring al the nodes at a single depth level of the search tree before Another {easierz) way to see it

proceeding to the next depth level.

6

NB: D is not
visited again

Numbers indicate order pulled off of Q (expanded)

Dark blue fill = Visited & Expanded
Light gray fill = Visited

tp~ Spring 02+ 23 (E

Slide5.3.24
Breadth-First (without Visited list)
Bigk kst lemenficlG: Add path extendions tond oFid We can repeat the breadth-first process without the Visited list and, as expected, one sees multiple paths

¢ P to C, D and G are added to Q, which were blocked by the Visited test earlier. I'll leave it as an exercise to
go through the steps in detail.

Q

1)

2 |(AS)(BS)

3 |(BS)(CAS)(DAS)

4 |(CAS)(DAS)(DBS)GBS)
5

6

7

(DAS)(DBS)(GBS)
(DBS)(GBS) (CDAS)(GDAS)
(GBS)|(CDAS)(GDAS) (CDBS) GDBS)

Added paths in blue

We show the paths in reversed order; the node's state is the first entry.
*We could have stopped here, when the first path to the goal was generated.

- Soring 02+ 24 (E

Slide5.3.25
Best-First

Finally, let'slook at Best-First Search. The key difference from depth-first and breadth-first is that we) »))
Pick “best” (by heuristic value) element of Q; Add path extensions anywhere in Q

look at the whole Q to find the best node (by heuristic value).

We start as before, but now we're showing the heuristic value of each path (which isthe value of its Q Visited
state) in the Q, so we can easily see which one to extract next. (0s) s

o s w | N =

Heuristic Values
A=2 c=1 $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of node's state is in front.

We show the paths in reversed order; the node's state is the first entry.

tp - Spring 02+ 35 (E

Slide5.3.26
Best-First

We pick thefirst n A B.
Pick “best” (by heuristic value) element of Q; Add path extensions anywhere in Q epick thefirst node and extend to A and

Q Visited
(10S) S
(2AS)(3BS) ABS

Heuristic Values
A=2 c=1 $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of node's state is in front.

We show the paths in reversed order; the node's state is the first entry.

- Soring 02+ 26 (E

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (19 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.3.27
Best-First

We pick the node corresponding to A, sinceiit has the best value (= 2) and extend to C and D.) »))
Pick “best” (by heuristic value) element of Q; Add path extensions anywhere in Q

Q Visited
(0s) s
(2AS)(3BS) ABS

(1CAS)(3BS) (4DAS) CDBAS

ol |w| (N =

Heuristic Values
A=2 c=1 $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of node's state is in front.

We show the paths in reversed order; the node's state is the first entry.

fp » Spring 02+ 27 (E
) Slide5.3.28
Best-First
!) »)) The node corresponding to C has the lowest value so we pick that one. That goes nowhere.
Pick “best” (by heuristic value) element of Q; Add path extensions anywhere in Q
Q Visited
1]¢08) S
2 [2AS)(3BS) ABS
3 |(1CAS)(3BS)(4DAS) CDBAS
4 |(3BS)(4DAS) CDBAS
5 Heuristic Values
A=2 c=1 $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of node's state is in front.
We show the paths in reversed order; the node's state is the first entry.
1ip+ Spring 02 - 28 (E
Slide5.3.29 .
Best-First
Then, we pick the node corresponding to B which has lower value than the path to D and extend to G Pick*hest' (by heuristc valuel element of . Add path extenss hereinQ
(not C because of previous Visit). ick “best” (by heuristic value) element of Q; path extensions anywhere in
Q Visited
1]¢108) s
2 [2AS)(3BS) ABS
3 |(1CAS)(3BS)(4DAS) CDBAS
4 |(3BS)(4DAS) CDBAS
5 |[(0GBS)(4DAS) G,CDBAS Heuristic Values
A=2 c=1 $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of node's state is in front.
We show the paths in reversed order; the node's state is the first entry.
ip » Spring 02+ 29 (E

Slide 5.3.30
Best-First

We pick the node corresponding to G and rejoice.
Pick “best” (by heuristic value) element of Q; Add path extensions anywhere in Q p P 9 K

Q Visited
1{(108) S
2 |2AS)(3BS) ABS
3 |(1ICAS)(3BS)(4DAS) CDBAS
4 |(3BS)(4DAS) CDBAS
5 |(0GBS)(4DAS) G,CDBAS Heuristic Values

A=2 c=1 $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of node's state is in front.
We show the paths in reversed order; the node's state is the first entry.

- Soring 02+ 30 (E

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (20 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.3.31
Best-First

We found the path to the goal from Sto B to G.) »))
Pick “best” (by heuristic value) element of Q; Add path extensions anywhere in Q

Q Visited D
1]¢108) s
2 [2AS)(3BS) ABS @
3 [(1CAS)(3BS)4DAS) CD,BAS 1
4 [(3BS)(4DAS) CDBAS
5 |(0GBS) [4 DAS) G,CDBAS Heuristic Values

A=2 c=1 $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of node's state is in front.
We show the paths in reversed order; the node's state is the first entry.

lp+ Spring 02+ 21 (E
6.034 Notes: Section 5.4
Slide54.1 Classes of Search
So far, we have looked at three any-path algorithms, depth-first and breadth-first, which are Class Name Operation
uninformed, and best-first, which is heuristically guided. Any Path Depth-First Systematic exploration of whole tree
Uninformed Breadth-First until a goal node is found.
Any Path Best-First Uses heuristic measure of goodness
Informed of a node, e.g. estimated distance to goal.
Ip+ Spring 2+ 1 (f
Slide5.4.2
Classes of Search

Now, we will look at the first algorithm that searches for optimal paths, as defined by a"path length"

Class Name Operation . " N . . = L
- - - measure. This uniform cost agorithm is uninformed about the goal, that is, it does not use any heuristic

Any Path Depth-First Systematic exploration of whole tree guidance.

Uninformed Breadth-First until a goal node is found. :

Any Path Best-First Uses heuristic measure of goodness

Informed of anode, e.g. estimated distance to goal.

Optimal Uniform-Cost Uses path “length” measure.

Uninformed Finds “shortest” path.

s

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (21 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.4.3
Simple Search Algorithm
Thisis the simple algorithm we have been using to illustrate the various searches. As before, we will see A search node is a path from some state X to the start state, e.g., (XBAS)
that the key issues are picking paths from Q and adding extended paths back in. [zte(;tsle;ﬂ; Z?Z’::r:}?‘:;fe;hi’;"’&;FGBC;"Q)S%‘??Q? p?h eg.X.
Let S be the start state.
1. Initialize Q with search node (S) as only entry; set Visited = (S)
2. IfQis empty, fail. Else, pick some partial path N from Q
3. If state(N) is a goal, return N (we've reached a goal)
4. (Otherwise) Remove N from Q
5. Find all the children of state(N) not in Visited and create all the one-step
extensions of N to each descendant.
6. Add all the extended paths to Q; add children of state(N) to Visited
7. Gotostep2.
Critical decisions:
Step 2: picking N from Q
Step 6: adding extensions of N to Q W
Slide5.4.4
Simple Search Algorithm
A search node is a path from some state X to the start state, e.g., (XBAS) We will continue to use the algorithm but (as we will see) the use of the Visited list conflicts with

The state of a search node is the most recent state of the path, e.g. X.
Let Q be a list of search nodes, e.g. (XBAS) (CBAS)...).

Let S be the start state.

Initialize Q with search node (8) as only entry; et Visited="($")
If Qis empty, fail. Else, pick some search node N from Q

optimal searching, so we will leave it out for now and replace it with something else later.

If state(N) is a goal, return N (we've reached a goal) Don't use Visited
(Otherwise) Remove N from Q for Optimal Search

Find all the children of state(N) not in-Visited-and-ereate all the one-step
extensions of N to each descendant.

6. Add all the extended paths to Q; add-children-of-state(Ny-to-Visited——
7. Gotostep2.

Critical decisions:

QoA w2

Step 2: picking N from Q

Step 6: adding extensions of Nto Q fpSpring 024 ‘(E

Slide5.4.5
Why not a Visited list?
Why can't we use a Visited list in connection with optimal searching? In the earlier searches, the use of
the Visited list guaranteed that we would not do extrawork by re-visiting or re-expanding states. It did

not cause any failures then (except possibly of intuition). + For the any-path algorithms, the Visited list would not cause us to fail to
find a path when one existed, since the path to a state did not matter.

tp- Spring 0125 (E

Slide 5.4.6

Why not a Visited list?

But, using the Visited list can cause an optimal search to overlook the best path. A simple example will

illustrate this.

+ For the any-path algorithms, the Visited list would not cause us to fail to
find a path when one existed, since the path to a state did not matter.

+ However, the Visited list in connection with optimal searches can cause us
to miss the best path.

tp~ Spring 02+ 6 4

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (22 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.4.7

Why not a Visited list?

Clearly, the shortest path (as determined by sum of link costs) to G is(SA D G) and an optimal search

had better find it.

+ For the any-path algorithms, the Visited list would not cause us to fail to
find a path when one existed, since the path to a state did not matter.

+ However, the Visited list in connection with UC can cause us to miss the

best path.
The shortest path from S to G is
AN (SADG)
‘o O)
GO
tp-Spring2+7 (E
. . Slide5.4.8
Why not a Visited list?
However, on expanding S, A and D are Visited, which means that the extension from A to D would
never be generated and we would miss the best path. So, we can't use a Visited list; nevertheless, we still
+ For the any-path algorithms, the Visited list would not cause us to fail to have the problem of multiple paths to a state leading to wasted work. We will deal with that issue later,
find a path when one existed, since the path to a state did not matter. sinceit can get a bit complicated. So, first, we will focus on the basic operation of optimal searches.
+ However, the Visited list in connection with UC can cause us to miss the

best path.

The shortest path from S to G is
(SADG)

AN
z + But, on extending (S), A and D
GO @ @ would be added to Visited list and
so (S A) would not be extended to
(SAD)

tp~ Spring 028 (E

Slide5.4.9
Implementing Optimal Search Strategies
Thefirst, and most basic, algorithm for optimal searching is called uniform-cost search. Uniform-cost is
almost identical in implementation to best-first search. That is, we always pick the best node on Q to
expand. The only, but crucial, difference isthat instead of assigning the node value based on the heuristic Pick best (measured by path length) element of Q
value of the node's state, we will assign the node value as the "path length” or "path cost”, a measure Add path extensions anywhere in Q.

obtained by adding the "length" or "cost" of the links making up the path.

Uniform Cost:

tip» Spring 02 -9 (4
Slide 5.4.10
Uniform Cost

To reiterate, uniform-cost search uses the total length (or cost) of a path to decide which one to expand.

Since we generally want the least-cost path, we will pick the node with the smallest path cost/length. By
Like best-first except that it uses the “total length (cost)” of a path instead the way, we will often use the word "length” when talking about these types of searches, which makes
ota heunistic'value or theistate. intuitive sense when we talk about the pictures of graphs. However, we mean any cost measure (like
Each link has a “length” or “cost” (which is always greater than 0) length) that is positive and greater than O for the link between any two states.

+ We want “shortest” or “least cost” path

- Soring 02+ 10 4

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (23 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All

Slide5.4.11

The path length is the SUM of the length associated with the links in the path. For example, the path
from Sto A to C hastotal length 4, sinceit includes two links, each with edge 2.

Uniform Cost

Like best-first except that it uses the “total length (cost)” of a path instead
of a heuristic value for the state.

+ Each link has a “length” or “cost” (which is always greater than 0)

+ We want “shortest” or “least cost” path

Total path cost:

(SAC) 4
(SBDG) 8
fIp+ Spring 02+ 12 (E
Slide5.4.13
Similarly for S-A-D-C.
Uniform Cost

Pick best (by path length) element of Q; Add path extensions anywhere in Q

o

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

- Spring 02+ 14

¢

rights reserved

Uniform Cost

Like best-first except that it uses the “total length (cost)” of a path instead
of a heuristic value for the state.

Each link has a “length” or “cost” (which is always greater than 0)

We want “shortest” or “least cost” path

Total path cost:
(SAQ) 4

wesa

Slide5.4.12

The path from Sto B to D to G haslength 8 since it includes links of length 5 (S-B), 1 (B-D) and 2 (D-

G).

Uniform Cost

Like best-first except that it uses the “total length (cost)” of a path instead
of a heuristic value for the state.

Each link has a “length” or “cost” (which is always greater than 0)

We want “shortest” or “least cost” path

Total path cost:

(SAC) 4
(SBDG) 8
(SADC) 9

tp- Spring 02 + 13 (E

Slide5.4.14

Given this, let's simulate the behavior of uniform-cost search on this simple directed graph. As usual we
start with a single node containing just the start state S. This path has zero length. Of course, we choose

this path for expansion.

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (24 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.4.15
Uniform Cost
This generates two new entries on Q; the path to A haslength 2 and the one to B has length 5. So, we _))
pick the path to A to expand. Pick best (by path length) element of Q; Add path extensions anywhere in Q
Q
1 108)

2 [(2AS)(5B9)

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

tp» Spring 02 + 15 (E
. Slide5.4.16
Uniform Cost
))) This generates two new entries on the queue. The new path to C is the shortest path on Q, so we pick it to
Pick best (by path length) element of Q; Add path extensions anywhere in Q expand
Q
1 108

2 [@2AS)(5BS)
3 [(4CAS)(6DAS)(BBS)

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

Hp- Soring02+ 16 (E
Side5.4.17
Uniform Cost
Since C has no descendants, we add no new paths to Q and we pick the best of the remaining paths, Pick best (by path length] lement of C: Add neth extensi herelin
which is now the path to B. ick best (by path length) element of Q; Add path extensions anywhere in
Q

1 (08

2 [(2AS)(5BS)

3 [(4CAS)(6DAS)(5BS)

4 [(6DAS)(5BS)

Added paths in blue; underlined paths are chosen for extension.

We show the paths in reversed order; the node's state is the first entry.

tp- Spring 02+ 17 (E
. Slide5.4.18
Uniform Cost

Pick best (by pth length) element of Q: Add path extensions anywhere in Q The path to B is extended to D and G and the path to D from B istied with the path to D from A. We are

using order in Q to settle ties and so we pick the path from B to expand. Note that at this point G has

Q been visited but not expanded.
1 108

2 |(2AS)(5BS)

3 |(4CAS)(6DAS)(5BS)

4 |(6DAS)(5BS)

5

(6DBS)(10GBS)(6DAS)

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

- Soring 02+ 18 4

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (25 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.4.19

Uniform Cost
Expanding D adds paths to C and G. Now the earlier path to D from A is the best pending path and we Pickibest by path lendlf} element of G444 paih extensi herein@
chooseit to expand. ick best (by path length) element of Q; path extensions anywhere in

Q

©s)

(2A8)(5BS)

(4CAS)(6DAS)(5BS)

(6DAS) (5BS)
(6DBS)(10GBS)(6DAS)
(8GDBS)(9CDBS) (10GBS)(6DAS)

oo |w N

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

tp~ Spring 02+ 19 (E

Slide5.4.20
Uniform Cost

))) This adds a new path to G and anew path to C. The new path to G is the best on the Q (at least tied for
Pick best (by path length) element of Q; Add path extensions anywhere in Q

best) so we pull it off Q.

Q

©s)

(2A8) (5BS)

(4CAS)(6DAS)(5BS)
(6DAS)(5BS)

(6DBS) (10GBS)(6DAS)
(8GDBS)(9CDBS)(10GBS)(6DAS)

(8GDAS)(9CDAS)(8GDBS)(9CDBS)
(10GBS)

oo s|w N[

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

- Soring 02+ 20 (E

Slide5.4.21
Uniform Cost

And we have found our shortest path (SA D G) whose length is 8. _ . .
Pick best (by path length) element of Q; Add path extensions anywhere in Q

Q

©s)

(2AS)(5BS)

(4CAS)(6DAS)(5BS)
(6DAS)(5BS)
(6DBS)(10GBS)(6DAS)
(8GDBS)(9CDBS)(10GBS)(6DAS)

8GDAS)[9CDAS)8GDBS)(9CDBS)
(10GBS)

|| s|w (o=

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

tp- Spring 02 + 21 (E

Slide5.4.22
Why not stop on first visiting a goal?
Note that once again we are not stopping on first visiting (placing on Q) the goal. We stop when the goal
gets expanded (pulled off Q).

When doing Uniform Cost, it is not correct to stop the search when the first
path to a goal is generated, that is, when a node whose state is a goal is
added to Q.

- Soring 02+ 22 4

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (26 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.4.23
Why not stop on first visiting a goal?
In uniform-cost search, it isimperative that we only stop when G is expanded and not just when it is

visited. Until a path isfirst expanded, we do not know for afact that we have found the shortest path to

the state. + When doing Uniform Cost, it is not correct to stop the search when the first

path to a goal is generated, that is, when a node whose state is a goal is
added to Q.

+ We must wait until such a path is pulled off the Q and tested in step 3. Itis

only at this point that we are sure it is the shortest path to a goal since
there are no other shorter paths that remain unexpanded.

wsn

Side5.4.24
Why not stop on first visiting a goal?
In the any-path searches we chose to do the same thing, but that choice was motivated at the time simply
by consistency with what we HAVE to do now. In the earlier searches, we could have chosen to stop

+ When doing Uniform Cost, it is not correct to stop the search when the first when visiting agoal state and everything would still work fine (actually better).

path to a goal is generated, that is, when a node whose state is a goal is
added to Q.

+ We must wait until such a path is pulled off the Q and tested in step 3. Itis
only at this point that we are sure it is the shortest path to a goal since
there are no other shorter paths that remain unexpanded.

+ This contrasts with the non-optimal searches where the choice of where to
test for a goal was a matter of convenience and efficiency, not correctness.

- Soring 02+ 24 (E

Slide5.4.25
Why not stop on first visiting a goal?
Note that the first path that visited G was not the eventually chosen optimal path to G. This explains our

unwillingness to stop on first visiting G in the example we just did. . . .
+ When doing Uniform Cost, it is not correct to stop the search when the first

path to a goal is generated, that is, when a node whose state is a goal is
added to Q.

+ We must wait until such a path is pulled off the Q and tested in step 3. Itis
only at this point that we are sure it is the shortest path to a goal since
there are no other shorter paths that remain unexpanded.

+ This contrasts with the Any Path searches where the choice of where to
test for a goal was a matter of convenience and efficiency, not correctness.

+ Inthe previous example, a path to G was generated at step 5, but it was a
different, shorter, path at step 7 that we accepted.

tp - Spring 02+ 35 (E

Slide5.4.26
Uniform Cost
It isvery important to drive home the fact that what uniform-cost search is doing (if we focus on the
sequence of expanded paths) is enumerating the paths in the search tree in order of their path cost. The
green numbers next to the tree on the left are the total path cost of the path to that state. Since, in atree,
there is a unique path from the root to any node, we can simply label each node by the length of that
path.

Another (easier?) way to see it

ay2 &Ds
s?{é}a s (D (@10
9 @s s @ (s

Total path cost

UC enumerates paths in order of total path cost!

- Soring 02+ 26 4

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (27 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.4.27
Uniform Cost

So, for example, thetrivial path from Sto Sisthe shortest path.))
Another (easier?) way to see it

1

®,2/.\5

s CoD é‘t s (oD (1o
HOROE s @ (s

Total path cost
Order pulled off of Q (expanded)

UC enumerates paths in order of total path cost!

tp+ Spring 012+ 27 (E

Slide5.4.28
Uniform Cost

) . Then the path from Sto A, with length 2, is the next shortest path.
Another (easier?) way to see it

Total path cost
Order pulled off of Q (expanded)

UC enumerates paths in order of total path cost!

tp- Soring 02+ 22 (E

Slide5.4.29
Uniform Cost

Then the path from Sto A to C, with length 4, is the next shortest path.) _
Another (easier?) way to see it

1
ay2 &Ds
6?{34 s (oD (@10

@ @ @ @

Total path cost
Order pulled off of Q (expanded)

UC enumerates paths in order of total path cost!

tp- Spring 02+ 23 (E

Slide 5.4.30
Uniform Cost

Another (easier?) way fo see it Then comes the path from Sto B, with length 5.

6 4 s (o) (10
1@ @ s @ @s

Total path cost
Order pulled off of Q (expanded)

UC enumerates paths in order of total path cost!

- Soring 02+ 30 (E

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (28 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.4.31
Uniform Cost

Another (easier?) way to see it

Followed by the path from Sto A to D, with length 6.

34 s (oD (1o
©@s s © (@s

Total path cost
Order pulled off of Q (expanded)

UC enumerates paths in order of total path cost!

1p+ Spring 02 + 21 (E

Slide5.4.32
Uniform Cost

)) And the path from Sto B to D, also with length 6.
Another (easier?) way to see it

6 4 6 D 10
1@ @@= s @ (s

Total path cost
Order pulled off of Q (expanded)

UC enumerates paths in order of total path cost!

- Soring 02+ 22 (E

Slide5.4.33
Uniform Cost

And, finally the path from Sto A to D to G with length 8. The other path (SB D G) also has length 8.))
Another (easier?) way to see it

./.\s

4 o 10
O @ @ (s

Total path cost
Order pulled off of Q (expanded)

UC enumerates paths in order of total path cost!

tp~ Spring 02+ 33 (E

Slide5.4.34
Uniform Cost

This gives us the path we found. Note that the sequence of expansion corresponds precisely to path-

Anofher easierJiway fo see i length order, so it is not surprising we find the shortest path.

./.\s

4 s (o) (10
© D @ s

Total path cost
Order pulled off of Q (expanded)

UC enumerates paths in order of total path cost!

- Spring 02+ 34 (E

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (29 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

6.034 Notes: Section 5.5

Slide5.5.1 Classes of Search
Now, we will turn our attention to what is probably the most popular search algorithm in Al, the A* Class Name Operation
algorithm. A* isan informed, optimal search agorithm. We will spend quite a bit of time going over Any Path Depth-First Systematic exploration of whole tree
A*; wewill start by contrasting it with uniform-cost search. Uninformed Breadth-First until a goal node is found.
Any Path Best-First Uses heuristic measure of goodness
Informed of a node, e.g. estimated distance to goal.
Optimal Uniform-Cost Uses path “length” measure.
Uninformed Finds “shortest” path.
Optimal A* Uses path “length” measure and heuristic
Informed Finds “shortest’ path
Ip+ Spring 2 + 1 (f

Slide5.5.2
Goal Direction
Uniform-cost search as described so far is concerned only with expanding short paths; it pays no

particular attention to the goal (since it has no way of knowing whereit is). UC isreally an agorithm for

+ UC s really trying to identify the shortest path to every state in the graph in L X 2 A .)
finding the shortest pathsto al statesin a graph rather than being focused in reaching a particular goal.

order. It has no particular bias to finding a path to a goal early in the search.

w2 o

Slide5.5.3 o
Goal Direction

We can bias UC to find the shortest path to the goal that we are interested in by using a heuristic estimate

of remaining distance to the goal. T_his, of course, canno_t be the exact path distance (if we kneN that we + UCis really trying to identify the shortest path to every state i the graph in
wquld not need much of a search); instead, it is a stand-in for the actual distance that can give us some order. It has no particular bias to finding a path to a goal early in the search.
guidance. We can introduce such a bias by means of heuristic function h(N), which is

an estimate (h) of the distance from a state to the goal.

wesmed

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (30 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Goal Direction

UC is really trying to identify the shortest path to every state in the graph in

order. It has no particular bias to finding a path to a goal early in the search.

We can introduce such a bias by means of heuristic function h(N), which is
an estimate (h) of the distance from a state to the goal.

Instead of enumerating paths in order of just length (g), enumerate paths in
terms of f = estimated total path length=g + h.

tpSpring 02+ 4

¢

Slide5.5.5

We call an estimate that always under estimates the remaining distance from any node an admissible

(heuristic) estimate.

Goal Direction

UC is really trying to identify the shortest path to every state in the graph in

order. It has no particular bias to finding a path to a goal early in the search.

We can introduce such a bias by means of heuristic function h(N), which is
an estimate (h) of the distance from a state to the goal.

Instead of enumerating paths in order of just length (g), enumerate paths in
terms of f = estimated total path length =g + h.

An estimate that always underestimates the real path length to the goal is
called admissible. For ple, an estimate of 0 is admissible (but useless)

Straight line distance is admissible estimate for path length in Euclidean
space.

Use of an admissible estimate guarantees that UC will still find the shortest
path.

tp~ Spring 0126

4

Slide5.5.7

UC using an admissible heuristic isknown as A* (A star). It isavery popular search method in Al.

Slide5.5.4

What we can do is to enumerate the paths by order of the SUM of the actual path length and the estimate
of the remaining distance. Think of this as our best estimate of the TOTAL distance to the goal. This
makes more sense if we want to generate a path to the goal preferentially to short paths away from the
goal.

Goal Direction

« UCisreally trying to identify the shortest path to every state in the graph in
order. It has no particular bias to finding a path to a goal early in the search.

« We can introduce such a bias by means of heuristic function h(N), which is
an estimate (h) of the distance from a state to the goal.

* Instead of enumerating paths in order of just length (g), enumerate paths in
terms of f = estimated total path length =g + h.

* Anestimate that always underestimates the real path length to the goal is

called admissible. For le, an estimate of 0 is admissible (but useless).
Straight line dist is admissible estimate for path length in Euclidean
space.

tp~ Spring 02+5 (E

Slide5.5.6

In order to preserve the guarantee that we will find the shortest path by expanding the partial paths based
on the estimated total path length to the goal (like in UC without an expanded list), we must ensure that
our heuristic estimate is admissible. Note that straight-line distance is always an underestimate of path-
length in Euclidean space. Of course, by our constraint on distances, the constant function 0 is always
admissible (but useless).

Goal Direction

* UCis really trying to identify the shortest path to every state in the graph in
order. It has no particular bias to finding a path to a goal early in the search.

+ We can introduce such a bias by means of heuristic function h(N), which is
an estimate (h) of the distance from a state n to a goal.

+ Instead of enumerating paths in order of just length (g), enumerate paths in
terms of f = estimated total path length =g + h.

+ Anestimate that always underestimates the real path length to the goal is

called admissible. For ple, an estimate of 0 is admissible (but useless).
Straight line dist is admissible estimate for path length in Euclidean
space.

» Use of an admissible estimate guarantees that UC will still find the shortest
path.

» UC with an admissible estimate is known as A* (pronounced “A star”)

search.
tip+ Spring 02 -7 (E

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (31 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.5.8

Straight-Line Estimate

Let'slook at aquick example of the straight-line distance underestimate for path length in a graph.
Consider the following simple graph, which we are assuming is embedded in Euclidean space, that is,
think of the states as city locations and the length of the links are proportional to the driving distance
between the cities along the best roads.

tpeSpring 0248 (E

Slide5.5.9

Straight-Line Estimate

Then, we can use the straight-line (airline) distances (shown in red) as an underestimate of the actual
driving distance between any city and the goal. The best possible driving distance between two cities
cannot be better than the straight-line distance. But, it can be much worse.

tp- Spring (129 (E

Slide5.5.10
Straight-Line Estimate

Here we see that the straight-line estimate between B and G is very bad. The actual driving distanceis
much longer than the straight-line underestimate. Imagine that B and G are on different sides of the
Grand Canyon, for example.

sO

iIp+ Spring 02+ 10 4
Slide5.5.11
Why use estimate of goal distance?
It_ may help to unde_rstand Why an L_Jnderestl mate of remaining distance may help reach the goa faster to Order in which UC looks at
visualize the behavior of UC in asimple example. /_ states. A and B are same
. . . . L . distance from start, so will
Imagine that the states in a graph represent pointsin a plane and the connectivity is to nearest neighbors. be looked at before any
In this case, UC will expand nodesin order of distance from the start point. That is, as time goes by, the longer paths. No “bias”
expanded points will be located within expanding circular contours centered on the start point. Note, /\ towards goal.
however, that points heading away from the goal will be treated just the same as points that are heading / ®
towards the goal. A - \
B goal
stal
Assume states are points
in the Euclidean plane.
tp » Spring 02 + 11 (E

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (32 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Why use estimate of goal distance?

Order in which UC looks at
states. Aand B are same
distance from start, so will
be looked at before any
longer paths. No “bias”
towards goal.

A
B goal

Order of examination using
dist. from start + estimate of
dist. to goal. Note “bias”
toward the goal; points away

Assume states are points
from goal look worse.

in the Euclidean plane.

IpSoring 02+ 12

Slide5.5.12

If we add in an estimate of the straight-line distance to the goal, the points expanded will be bounded
contours that keep constant the sum of the distance from the start and the distance to the goal, as
suggested in the figure. What the underestimate has doneisto "bias" the search towards the goal.

Slide5.5.13

Let'swalk through an example of A*, that is, uniform-cost search using a heuristic whichisan
underestimate of remaining cost to the goal. In this example we are focusing on the use of the
underestimate. The heuristic we will be using is similar to the earlier one but slightly modified to be

admissible.

We start at Sas usual.

A*

Pick best (by path length+heuristic) element of Q; Add path extensions anywhere in Q

o

Heuristic Values

A=2 c=1 $=0
B=3 D=1 G=0
Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.
fp » Spring 02+ 13 ‘4

A*

Pick best (by path length+heuristic) element of Q; Add path extensions anywhere in Q

Q
109
2 |(4AS)(8BS)

Heuristic Values
A=2 c=1 $=0
B=3 D=1 G=0

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

- Soring 02+ 14

Slide5.5.14

And expand to A and B. Note that we are using the path length + underestimate and so the S-A path has
avalue of 4 (length 2, estimate 2). The S-B path has avalue of 8 (5 + 3). We pick the path to A.

4

Slide5.5.15

Expand to C and D and pick the path with shorter estimate, to C.

A*

Pick best (by path length+heuristic) element of Q; Add path extensions anywhere in Q

Q

1](08)

2 |(4AS)(8BS)

3 [(5CAS)(7TDAS)(BBS)

Heuristic Values

A=2
B=3

c=1
D=1

S=0
G=0

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

Ip~ Spring 02+ 15

4

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (33 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.5.16
A*

Pick best (by path length+heuristic) element of Q; Add path extensions anywhere in Q

Q

©8)

(4AS)(8BS)
(5CAS)(TDAS)(8BS)
(IDAS) 8BS)

Bl N =

Heuristic Values
A=2 c=1 $=0
B=3 D=1 G=0

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

- Soring 02+ 16 (E

Slide5.5.17

Then a path to the goal has the best value. However, there is another path that istied, the S-B path. It is
possible that this path could be extended to the goal with atotal length of 8 and we may prefer that path
(since it has fewer states). We have assumed here that we will ignore that possibility, in some other
circumstances that may not be appropriate.

Slide5.5.18
A*

Pick best (by path length+heuristic) element of Q; Add path extensions anywhere in Q

Q

©s)

(4AS)(8BS)
(5CAS)(7TDAS)(8BS)
(7TDAS)(8BS)
©GDAS)[10CDAS) 8BS

(s w (N =

Heuristic Values
A=2 c=1 $=0
B=3 D=1 G=0

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

- Soring 02+ 18 4

Slide5.5.19

It isimportant to realize that not all heuristics are admissible. In fact, the rather arbitrary heuristic values
we used in our best-first example are not admissible given the path lengths we later assigned. In
particular, the value for D is bigger than its distance to the goal and so this set of distancesis not
everywhere an underestimate of distance to the goal from every node. Note that the (arbitrary) value
assigned for Sis also an overestimate but this value would have no ill effect since at thetime Sis
expanded there are no alternatives.

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (34 of 52)3/13/2007 8:49:44 PM

C has no descendants, so we pick the shorter path (to D).

A*

Pick best (by path length+heuristic) element of Q; Add path extensions anywhere in Q

Q

©s)

(4AS)(8BS)

(5CAS)(7DAS)(8BS)

(IDAS) (8BS)

s w | N =

(8GDAS)(10CDAS)(8BS)

Heuristic Values
A=2 c=1 $=0
B=3 D=1 G=0

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

tp- Spring 02+ 17

4

So, we stop with a path to the goal of length 8.

Not all heuristics are admissible

Given the link lengths in the figure, is the table
of heuristic values that we used in our earlier
best-first example an admissible heuristic?

No!
Ais ok
Bis ok
Cis ok Heuristic Values
D is too big, needs to be <=2 A=2 c=1 $=10
$ is too big, can always use 0 for start B=3 D=4 G=0

Ip~ Spring 02+ 19

4

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

L . Slide 5.5.20
Admissible Heuristics
Although it is easy and intuitive to illustrate the concept of a heuristic by using the notion of straight-line

8 Puzzle: Move tles to reach goal. Think of a move as moving “empty” tile. distance to the goal in Euclidean space, it isimportant to remember that thisis by no means the only

6 12 18 1 12 |3 example.
s | = o] [_ _— _ _ _
REIE 5 15 Take solving the so-called 8-puzzle, in which the goal isto arrange the pieces as in the goal state on the
S S right. We can think of amove in this game as sliding the "empty" space to one of its nearest vertical or

horizontal neighbors. We can help steer a search to find a short sequence of moves by using a heuristic

estimate of the moves remaining to the goal.

Alternative underestimates of “distance” (number of moves) to goal:
1. Number of misplaced tiles (7 in example above) One admissible estimate is simply the number of misplaced tiles. No move can get more than one

misplaced tile into place, so this measure is a guaranteed underestimate and hence admissible.

sz o

Slide5.5.21 o
Admissible Heuristics
We can do better if we note that, in fact, each move can at best decrease by one the "Manhattan" (aka

Taxicab, akarectilinear) distance of aftile from its goal. 8 Puzzle: Move tiles to reach goal. Think of a move as moving “empty” tile.

6 |2 |8 112 |3

So, the sum of these distances for each misplaced tile is also an underestimate. Note that it is always a 3 15 :> 8 4
better (larger) underestimate than the number of misplaced tiles. In this example, there are 7 misplaced YRCEE 7 16 |5
tiles (all except tile 2), but the Manhattan distance estimate is 17 (4 for tile 1, O for tile 2, 2 for tile 3, 3

for tile4, 1 for tile 5, 3for tile 6, 1 for tile 7 and 3 for tile 8). 5

Alternative underestimates of “distance” (number of moves) to goal:

1. Number of misplaced tiles (7 in example above)

2. Sum of Manhattan distance of tile to its goal location (17 in example
above). Manhattan distance between (x,,y,) and (x,,y,) is [X;-X,[*ly,-Y|
Each move can only decrease the distance of exactly one tile.

The second of these is much better at predicting actual number of moves.

tp- Spring 02 + 21 (E

6.034 Notes: Section 5.6

Slide5.6.1 States vs Paths

In our discussion of uniform-cost search and A* so far, we have ignored the issue of revisiting states.
We indicated that we could not use a Visited list and still preserve optimality, but can we use
something else that will keep the worst-case cost of a search proportional to the number of statesin a
graph rather than to the number of non-looping paths? The answer isyes. We will start looking at
uniform-cost search, where the extension is straightforward and then tackle A*, where it is not.

sz

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (35 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Dynamic Programming Optimality Principle
and the Expanded list
+ Given that path length is additive, the shortest path from S to G via a state X is

made up of the shortest path from S to X and the shortest path from X to G.
This is the "dynamic programming optimality principle".

Slide5.6.2

What will come to our rescue is the so-called "Dynamic Programming Optimality Principle”, whichis
fairly intuitive in this context. Namely, the shortest path from the start to the goal that goes through some
state X is made up of the shortest path to X followed by the shortest path from X to G. Thisis easy to
prove by contradiction, but we won't do it here.

7,
9,

s

Slide5.6.3

Given this, we know that there is no reason to compute any path except the shortest path to any state,
since that is the only path that can ever be part of the answer. So, if we ever find a second path to a
previously visited state, we can discard the longer one. So, when adding nodes to Q, check whether
another node with the same state is already in Q and keep only the one with shorter path length.

. . o Slide5.6.4
Dynamic Programming Optimality Principle
and the Expanded list

+ Given that path length is additive, the shortest path from S to G via a state X is
made up of the shortest path from S to X and the shortest path from X to G.
This is the "dynamic programming optimality principle".

+ This means that we only need to keep the single best path from S to any state
X; if we find a new path to a state already in Q, discard the longer one.

+ Note that the first time UC pulls a search node off of Q whose state is X, this
path is the shortest path from S to X. This follows from the fact that UC
expands nodes in order of actual path length.

tp~ Spring 02 4 (E

Slide5.6.5

So, let's remember the states that we have expanded already, ina"list" (or, better, a hash table) that we
will call the Expanded list. If we try to expand a node whose state is already on the Expanded list, we can
simply discard that path. We will refer to algorithms that do this, that is, no expanded state is re-visited,
asusing astrict Expanded list.

Note that when using a strict Expanded list, any visited state will either bein Q or in the Expanded list.
So, when we consider a potential new node we can check whether (@) its stateisin Q, in which case we
accept it or discard it depending on the length of the new path versus the previous best, or (b) itisin
Expanded, in which case we always discard it. If the node's state has never been visited, we add the node

to Q.

Dynamic Programming Optimality Principle
and the Expanded list

Given that path length is additive, the shortest path from S to G via a state X is
made up of the shortest path from S to X and the shortest path from X to G.
This is the "dynamic programming optimality principle".

This means that we only need to keep the single best path from S to any state
X; if we find a new path to a state already in Q, discard the longer one.

tp- Spring (123 (E

We have observed that uniform-cost search pulls nodes off Q (expands them) in order of their actual path
length. So, the fir st time we expand a node whose state is X, that node represents the shortest path to that
state. Any subsequent path we find to that state is a waste of effort, since it cannot have a shorter path.

Dynamic Programming Optimality Principle
and the Expanded list

Given that path length is additive, the shortest path from S to G via a state X is
made up of the shortest path from S to X and the shortest path from X to G.
This is the "dynamic programming optimality principle".

This means that we only need to keep the single best path from S to any state
X; if we find a new path to a state already in Q, discard the longer one.

Note that the first time UC pulls a search node off of Q whose state is X, this
path is the shortest path from S to X. This follows from the fact that UC
expands nodes in order of actual path length.

So, once expand one path to state X, we don’t need to consider (extend) any
other paths to X. We can keep a list of these states, call it Expanded. If the
state of the search node we pull off of Q is in the Expanded list, we discard the
node. When we use the Expanded list this way, we call it “strict”.

tip+ Spring 02 +5. (E

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (36 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.6.6
Dynamic Programming Optimality Principle
and the Expanded list The correctness of uniform-cost search does not depend on using an expanded list or even on discarding
+ Given that path length is additive, the shortest path from S to G via a state X is longer paths to _the Same St_ate _(the Quwill just b_e_l onger than nmy)we can _use U_C with or without
made up of the shortest path from S to X and the shortest path from X to G. these optimizations and it is still correct. Exploiting the optimality principle by discarding longer paths to
This is the "dynamic programming optimality principle”. states in Q and not re-visiting expanded states can, however, make UC much more efficient for densely
connected graphs.

+ This means that we only need to keep the single best path from S to any state
X; if we find a new path to a state already in Q, discard the longer one.

+ Note that the first time UC pulls a search node off of Q whose state is X, this
path is the shortest path from S to X. This follows from the fact that UC
expands hodes in order of actual path length.

+ So, once we expand one path to state X, we don’t need to consider (extend)
any other paths to X. We can keep a list of these states, call it Expanded. If
the state of the search node we pull off of Q is in the Expanded list, we discard
the node. When we use the Expanded list this way, we call it “strict”.

+ Note that UC without this is still correct, but inefficient for searching graphs.

tp-Spring 12+6 (E

Slide5.6.7 Simple Optimal Search Algorithm

' .) .) Uniform Cost
So, now, we need to modify our simple algorithm to implement uniform-cost search to take advantage of nitorm Lo

the Optimality Principle. We start with our familiar algorithm... A search node is a path from some state X to the start state, e.g., (XBA S)
The state of a search node is the most recent state of the path, e.g. X.

Let Q be alist of search nodes, e.g. (XBAS) (CBAS)...).
Let S be the start state.

Initialize Q with search node (S) as only entry;

If Q is empty, fail. Else, pick least cost search node N from Q
If state(N) is a goal, return N (we've reached the goal)
(Otherwise) Remove N from Q.

I A

Find all the children of state(N) and create all the one-step extensions of N
to each descendant.

Add all the extended paths to Q;
8. Gotostep2.

=

tp- Spring (127 (E

Simple Optimal Search Algorithm Slide568

Unif Cost + Strict E ded List
rriomm Cost v e Spanimi Ll ... and modify it. First we initialize the Expanded list in step 1. Since this s uniform-cost search, the

A search node is a path from some state X to the start state, e.g., (XBAS) algorithm picks the best element of Q, based on path length, in step 2. Then, in step 5, we check whether
The state of a search node is the most recent state of the path, e.g. X. the state of the new node is on the Expanded list and if so, we discard it. Otherwise, we add the state of
Let Q be a list of search nodes, e.g. (XBAS) (CBAS)...). th R I .
Let Sbie the start siafe. e new node to the Expanded list. In step 6, we avoid visiting nodes that are Expanded since that would
be awaste of time. In step 7, we check whether thereisanode in Q corresponding to each newly visited
Initialize Q with search node (S) as only entry; set Expanded = () state, if so, we keep only the shorter path to that state.

If Q is empty, fail. Else, pick least cost search node N from Q

If state(N) is a goal, return N (we've reached the goal)

(Otherwise) Remove N from Q.

if state(N) in Expanded, go to step 2, otherwise add state(N) to Expanded.

o G W

Find all the children of state(N) (Not in Expanded) and create all the one-
step extensions of N to each descendant.

7. Add all the extended paths to Q; if descendant state already in Q, keep only
shorter path to the state in Q.

8. Gotostep2.

tp~ Spring 02 -8 4

Slide 5.6.9 y @ 2 .
Uniform Cost (with strict expanded list)
Let's step through the operation of this algorithm on our usual example. We start with anode for S,

having a 0-length path, as usual. Pick best (by path length) element of Q; Add path extensions anywhere in Q

o

Expanded

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

tip+ Spring 02 +9. (E

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (37 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide 5.6.10
Uniform Cost (with strict expanded list)

Pick best (by path length) element of Q; Add path extensions anywhere in Q

Q Expanded
1]©8)
2 [(2AS)(5BS) S

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

Ip+Soring 02+ 10 (E

Slide5.6.11

We then pick the node at A to expand since it has the shortest length among the nodes in Q. We get the
two extensions of the A node, which gives us paths to C and D. Neither of the two new nodes' statesis
already present in Q or in Expanded so we add them both to Q. We a'so add A to the Expanded list.

Slide5.6.12
Uniform Cost (with strict expanded list)

Pick best (by path length) element of Q; Add path extensions anywhere in Q

new nodes to add to Q.
Q Expanded
1]@8)
2 |(2AS)(5BS) S
3 [(4CAS)(6DAS)(5BS) SA
4 [6DAS)(5BS) SAC

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

- Soring 02+ 12 4

Slide 5.6.13

We select the node with the shortest path in Q, which is the node at B with path length 5 and generate the
new descendant nodes, one to D and one to G. Note that at this point we have generated two pathsto D -
(SA D) and (S B D) both with length 6. We're free to keep either one but we do not need both. We will
choose to discard the new node and keep the one already in Q.

We expand the S node, add its descendants to Q and add the state S to the Expanded list.

Uniform Cost (with strict expanded list)

Pick best (by path length) element of Q; Add path extensions anywhere in Q

Q Expanded
1]08)
2 |(2AS)(5BS) S
3 [(4CAS)(6DAS)(5BS) SA

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

tp-Spring 02+ 14 (E

We pick the node at C to expand, but C has no descendants. So, we add C to Expanded but there are no

Uniform Cost (with strict expanded list)

Pick best (by path length) element of Q; Add path extensions anywhere in Q

Q Expanded
1 108)
2 |(2AS)(5BS) S
3 [(4CAS)(6DAS)(5BS) SA
4 [(6DAS)(5BS) SAC
5

(6DBS)(10GBS)(6DAS) SACB

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

P g

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (38 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.6.14
Uniform Cost (with strict expanded list)

EigkiesHbnati il elorment of G8ad neth sien - The node corresponding to the (S A D) path is now the shortest path, so we expand it and generate two
ckcbest {by path lengtf) element of @; Add path extensions;anywhere in descendants, one going to C and one going to G. The new C node can be discarded since C is on the

Expanded list. The new G node shares its state with a node already on Q, but it corresponds to a shorter
Q Expanded "
1 les) path - so we discard the older node in favor of the new one. So, at this point, Q only has one remaining
node.
2 |2AS)(5BY) S
3 |[4CAS)(6DAS)(5BS) SA
4 |(6DAS)(5BS) SAC
5 |(ADBS)(10GBS)(6DAS) SACB
6

(8GDAS) (ACB-AS) 106-BS) | sACBD

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

Ip+Soring 02+ 14 (E

Slide5.6.15

Uniform Cost (with strict expanded list)
This node corresponds to the optimal path that is returned. It is easy to show that the use of an Expanded

list, aswell as keeping only the shortest path to any state in Q, preserve the optimality guarantee of Rickbest (bypath fength) element of Q;Add path extensions;anywhere in.Q
uniform-cost search and can lead to substantial performance improvements. Will this hold true for A* as
well? Q Expanded

1 1098)

2 |(2AS)(5BS) S

3 |(4CAS)(6DAS)(5BS) SA

4 |(6DAS)(5BS) SAC

5 |[(6DBS)(10GBS)(6DAS) S,ACB

6 [BGDAS)|acEAS) (10689) S,ACBD

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

tp- Spring 02+ 15 (E

Slide 5.6.16
A* (without expanded list)

Le€ ol bethe pathicost ofn-where i ht dect il oath First, let'sreview A* and the notation that we have been using. The important notation to remember is
et g(N) be the path cost of n, w e,'e n '_s asearchiree "°_ :e‘ .¢. a partial path. that the function g represents actua path length along a partial path to a node's state. The function h
+ Let h(N) be h(state(N)), the heuristic estimate of the remaining path length to the

goal from state(N) represents the heuristic value at a node's state and f is the total estimated path length (to agoal) and isthe
.+ Let (N} = g(N) + h(state(N)) be the total estimated path cost of a node, i.. the sum of the actual length (g) and the heuristic estimate (h). A* picks the node with the smallest value of f
estimate of a path to a goal that starts with the path given by N. to expand.

+ A* picks the node with lowest f value to expand

- Soring 02+ 16 4

Slide5.6.17
A* (without expanded list)
A*, without using an Expanded list or discarding nodes in Q but using an admissible heuristic -- that is,
one that underestimates the distance to the goal -- is guaranteed to find optimal paths.

Let g(N) be the path cost of n, where n is a search tree node, i.e. a partial path.

Let h(N) be h(state(N)), the heuristic estimate of the remaining path length to the
goal from state(N).

Let f(N) = g(N) + h(state(N)) be the total estimated path cost of a node, i.e. the
estimate of a path to a goal that starts with the path given by N.

A* picks the node with lowest f value to expand

A* (without expanded list) and with admissible heuristic is guaranteed to find
optimal paths - those with smallest path cost.

Pt g

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (39 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

. . Slide5.6.18
A* and the strict Expanded List
If we use the search algorithm we used for uniform-cost search with a strict Expanded list for A*, adding

* The strict Expanded list (also known as a Closed list) is commonly used in . o e L i’
implementations of A* but, to guarantee finding optimal paths, this, in an admissible heuristic to the path length, then we can no longer guarantee that it will always find the
implementation requires a stronger condition for a heuristic than simply optimal path. We need a stronger condition on the heuristics used than being an underestimate.

being an underestimate.

e E g

Sliide5.6.19
A* and the strict Expanded List

Here's an example that illustrates this point. The exceedingly optimistic heuristic estimate at B "lures” The stri . o .

- X The strict Expanded list (also known as a Closed list) is commonly used in
the A* algorithm down the wrong path. implementations of A* but, to guarantee finding optimal paths, this
implementation requires a stronger condition for a heuristic than simply
being an underestimate.

Here’s a counterexample: The heuristic values listed below are all
underestimates but A’ usingBan Expanded list will not find the optimal path.
The misleading estimate at B throws the algorithm off, C is expanded before
the optimal path to it is found.

Heuristic Values
A=100 C=90 S=0
B=1 G=0

tp- Spring 02+ 19 (E

. . Slide 5.6.20
A* and the strict Expanded List
Y ou can see the operation of A* in detail here, confirming that it finds the incorrect path. The correct

+ The strict Expanded list (also known as a Closed list) is commonly used in N i " N i o
implementatl%ns of A* but, to guarantee finding optimal paths, this partial path viaA is blocked when the path to C via B is expanded. In step 4, when A isfinally expanded,
implementation requires a stronger condition for a heuristic than simply the new path to C is not put on Q, because C has already been expanded.

being an underestimate.
Here’s a counterexample: The heuristic values listed below are all
underestimates but A" using an Expanded list will not find the optimal path.
The misleading estimate at B throws the algorithm off, C is expanded before
the optimal path to it is found.

Q Expanded
1/(08)
2| (3BS) (101AS) s
3/(@acBS)(101AS) |B,S
4/ (101AS) (104G CBS) | C,B, S Heuristic Values
5[(104G CBY)| AC.B,S Aellp C=0 5=

B=1 G=0
Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

ip+ Spring 02+ 20 (E
Slide5.6.21 .
Consistency
. . . .
.The stronger cor.1d|t| onsona heurlst!c that e.nables usto Impl ement A* just the Same way we . « To enable implementing A* using the strict Expanded list, H needs to satisfy
implemented uniform-cost search with a strict Expanded list are known as the consistency conditions. the following consistency (also known as monotonicity) conditions.
They are also called monotonicity conditions by others. The first condition is simple, namely that goal « h(s) =0, if n,is a goal
states have a heuristic estimate of zero, which we have already been assuming. The next condition is the * h(s) - h(s) - c(s;s) , for n; a child of n;

critical one. It indicates that the difference in the heuristic estimate between one state and its descendant
must be less than or equal to the actual path cost on the edge connecting them.

tp- Spring 02+ 21 (E

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (40 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

. Slide5.6.22
Consistency
+ o anable Implementiig AF ualng the sirict Epandsd sk, H nssdsto satiety The best way of visualizing the consistency condition isasa trianglei nequ_allty , that is, one side of the
the following consistency (also known as monotonicity) conditions. triangleislessthan or equal the sum of the other two sides, as seen on the diagram here.
« h(s) =0,if n;is a goal
¢ h(s) - h(s) - c(s;s) , for n; a child of n,
+ That is, the heuristic cost in moving from one entry to the next cannot
decrease by more than the arc cost between the states. This is a kind of

triangle inequality. This condition is a highly desirable property of a heuristic
function and often simply assumed (more on this later).

n, hs)

c(ss) J \goal

n h(s)

Ip+Soring 0222 (E

Slide 5.6.23
Consistency Violation
Here isasimple example of a(gross) violation of consistency. If you believe goal is 100 units from ny;, . .

X R X i : L + A simple example of a violation of
then moving 10 unitsto n; should not bring you to a distance of 10 units from the goal. These heuristic consistency.
estimates are not consistent. * h(s) - h(s) - c(s;s)
* In example, 100-10 > 10

+ If you believe goal is 100 units from
n;, then moving 10 units to n;
should not bring you to a distance his)=10

of 10 units from the goal. ﬂi\
¢(s;s)=10 goal

K4 h(s)=100

tp- Spring 02+ 23 (E

Slide5.6.24
A* (without expanded list)
| want to stress that consistency of the heuristic is only necessary for optimality when we want to discard
paths from consideration, for example, because a state has already been expanded. Otherwise, plain A*
without using an expanded only requires only that the heuristic be admissible to guarantee optimality.

Let g(N) be the path cost of n, where n is a search tree node, i.e. a partial path.

Let h(N) be h(state(N)), the heuristic estimate of the remaining path length to the
goal from state(N).

+ Let f(N) = g(N) + h(state(N)) be the total estimated path cost of a node, i.e. the
estimate of a path to a goal that starts with the path given by n.

A* picks the node with lowest f value to expand

A* (without expanded list) and with admissible heuristic is guaranteed to find
optimal paths - those with the smallest path cost.
+ This is true even if heuristic is NOT consistent.

- Soring 02+ 24 4

Slide5.6.25
A* (without expanded list)
Thisillustrates that A* without an Expanded list has no trouble coping with the example we saw earlier
that showed the pitfalls of using astrict Expanded list. This heuristic is not consistent but it is an Note that heuristic is admissible but not consistent
underestimate and that is all that is needed for A* without an Expanded list to guarantee optimality.

Q

(908)
(3BS)(101AS)
(94CBS)(101AS)
(101A) (104G CBS)
(92CAS)(104GCBS) Heuristic Values

(102G CAS)|104G CBS) ASI00 C=00 S=00
B=1 G=0
Added paths in blue; underlined paths are chosen for extension.

o|la|lpa|lw | =

PSS

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (41 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide 5.6.26
A* (with strict expanded list)
The extension of A* to use a strict expanded list isjust like the extension to uniform-cost search. In fact,
it isthe identical algorithm except that it usesf valuesinstead of g values. But, we stress that for this
algorithm to guarantee finding optimal paths, the heuristic must be consistent.

+ Just like Uniform Cost search.

+ When a node N is expanded, if state(N) is in expanded list, discard N, else add
state(N) to expanded list.

+ If some node in Q has the same state as some descendant of N, keep only node
with smaller f, which will also correspond to smaller g.

+ For A* (with strict expanded list) to be guaranteed to find the optimal path, the
heuristic must be consistent.

flp+ Spring 02+ 26 (E
Slide 5.6.27 . . .
A* (with strict expanded list)
If we modify the heuristic in the example we have been considering so that it is consistent, as we have
done here by increasing the value of h(B), then A* (even when using a strict Expanded list) will work. Note that this heuristic is admissible and consistent
Q Expanded

1/ (90 8)

2((90BS) (101AS) S

3| (101 AS) (104CBS) AS

4/ (102CAS) (104-€BS) |CAS

sll102G6cAS G,CAS Heuristic Values

B A=100 C=100 $=90
B=88 G=0
Added paths in blue; underlined paths are chosen for extension.
tp » Spring 02 + 27 (E
. L . . Slide5.6.28
Dealing with inconsistent heuristic
What doifweh . isterit heuristic but we:stillwantogtimal People sometimes simply assume that the consistency condition holds and implement A* with a strict
pat:s;a" We do [we have an inconsistent heuristlc but we still want optima Expanded list (also called a Closed list) in the simple way we have shown before. But, thisis not the
only (or best) option. Later we will seethat A* can be adapted to retain optimality in spite of a heuristic
that is not consistent - there will be a performance price to be paid however.
ilp+ Spring 02+ 28 4

Slide 5.6.29

Dealing with inconsistent heuristic
The key step needed to enable A* to cope with inconsistent heuristics is to detect when an overly
optimistic heuristic estimate has caused us to expand a node prematurely, that is, before the shortest path
to that node has been found. Thisis basically analogous to what we have been doing when we find a
shorter path to a state already in Q, except we need to do it to statesin the Expanded list. In this modified
algorithm, the use of the Expanded list is not strict: we allow re-visiting states on the Expanded list.

+ What can we do if we have an inconsistent heuristic but we still want optimal
paths?
+ Modify A* so that it detects and corrects when inconsistency has led us astray:

To implement this, we will keep in the Expanded list not just the expanded states but the actual node that
was expanded. In particular, this records the actual path length at the time of expansion

psmes

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (42 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

. L . . Slide 5.6.30
Dealing with inconsistent heuristic

What can we do ifwe have an inconsistent heuristic but we still want optimal Let's consider in detail the operation of the Expanded list if we want to handle inconsistent heuristics

paths? while guaranteeing optimal paths.
+ Modify A* so that it detects and corrects when inconsistency has led us astray:

A i) . ey S a1y Assume that we are adding anode, call it node;, to Q when using an Expanded list. So, we check to see
+ Assume we are adding node, to Q and node, is present in Expanded list with)

node, .state = node,.state. if anode with the same state is present in the Expanded list and we find node, which matches.

flp+ Spring 02 + 30 (E
Slide 5.6.31

Dealing with inconsistent heuristic
With astrict Expanded list, we simply discard node;; we do not add it to Q. . . . - . .
+ What can we do if we have an inconsistent heuristic but we still want optimal
paths?
« Modify A* so that it detects and corrects when inconsistency has led us astray:

+ Assume we are adding node, to Q and node, is present in Expanded list with
node, .state = node,.state.

+ Strict -
+ do not add node, to Q

tp - Spring 02 + 21 (E

. Lo . L Slide 5.6.32
Dealing with inconsistent heuristic
:) ! o . . With anon-strict Expanded list, the situation is a bit more complicated. We want to make sure that node;
What can we do if we have an inconsistent heuristic but we still want optimal
paths? has not found a better path to the state than node,. If a better path has been found, we remove the old
Modify A* so that it detects and corrects when inconsistency has led us astray: node from Expanded (since it does not represent the optimal path) and add the new node to Q.

+ Assume we are adding node, to Q and node, is present in Expanded list with
node, .state = node,.state.

Strict -
+ do not add node, to Q
Non-Strict Expanded list -
+ If node,.path_length < node,.path_length, then
- Delete node, from Expanded list
- Add node, to Q

- Soring 02+ 32 (E

Slide5.6.33
Worst Case Complexity

Let'sthink abit about the worst case complexity of A*, in terms of the number of nodes expanded (or) . B R
visited). + The number of states in the search space may be exponential in some “depth

parameter, e.g. number of actions in a plan, number of moves in a game.

Aswe've mentioned before, it is customary in Al to think of search complexity in terms of some "depth"”
parameter of the domain such as the number of stepsin aplan of action or the number of movesin a
game. The state space for such domains (planning or game playing) grows exponentially in the "depth",
that is, because at each depth level there is some branching factor (e.g., the possible actions) and so the
number of states grows exponentially with the depth.

We could equally well speak instead of the number of states as a fixed parameter, call it N, and state our

complexity in terms of N. We just have to keep in mind then that in many applications, N grows
exponentially with respect to the depth parameter.

Ip+ Spring 02+ 33 ‘4

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (43 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Worst Case Complexity

The number of states in the search space may be exponential in some “depth”
parameter, e.g. number of actions in a plan, number of moves in a game.

All the searches, with or without visited or expanded lists, may have to visit (or
expand) each state in the worst case.

So, all searches will have worst case complexities that are at least proportional
to the number of states and therefore exponential in the “depth” parameter.

This is the bottom-line irreducible worst case cost of systematic searches.

pe Spring 02434

¢

Slide5.6.35

The problem is that if we have no memory of what states we've visited or expanded, then the worst case
for adensely connected graph can be much, much worse than this. One may end up doing exponentially

more work.

Worst Case Complexity

+ A state space with N states may give rise to a search tree that has a number of
nodes that is exponential in N, as in this example.

=)

A

- Soring 02+ 35

4

Slide 5.6.37

A search agorithm that does not keep avisited or expanded list will do exponentially more work that
necessary. On the other hand, if we use a strict expanded list, we will never expand more than the

(unavoidable) N states.

Slide5.6.34

In the worst case, when the heuristics are not very useful or the nodes are arranged in the worst possible
way, al the search methods may end up having to visit or expand all of the states (up to some depth). In
practice, we should be able to avoid this worst case but in many cases one comes pretty close.

Worst Case Complexity

The number of states in the search space may be exponential in some “depth”
parameter, e.g. number of actions in a plan, number of moves in a game.

All the searches, with or without visited or expanded lists, may have to visit (or
expand) each state in the worst case.

So, all searches will have worst case complexities that are at least proportional
to the number of states and therefore exponential in the “depth” parameter.

This is the bottom-line irreducible worst case cost of systematic searches.

Without memory of what states have been visited (expanded), searches can do
(much) worse than visit every state.

tp~ Spring 02+ 5 (E

Slide 5.6.36

We've seen this example before. It shows that a state space with N states can generate a search tree with
2”N nodes.

Worst Case Complexity

+ A state space with N states may give rise to a search tree that has a number of
nodes that is exponential in N, as in this example.

=)

AN

+ Searches without a visited (expanded) list may, in the worst case, visit (expand)
every node in the search tree.

+ Searches with strict visited (expanded lists) will visit (expand) each state only
once.

tp~ Spring 02 + 7 (E

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (44 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide 5.6.38
Optimality & Worst Case Complexity

Here we summarize the optimality and complexity of the various algorithms we have been examining.

Algorithm Heuristic Expanded Optimality Worst Case #
List Guaranteed? | Expansions

Uniform Cost | None Strict Yes N

A* Admissible | None Yes >N

A* Consistent Strict Yes N

A* Admissible | Strict No N

A* Admissible Non Strict Yes >N

N is number of states in graph

sz o

6.034 Notes: Section 5.7

Slide5.7.1 Optional Topics

This set of slides goesinto more detail on some of the topics we have covered in this chapter. + These slides go into more depth on a variety of topics we have touched
upon:

+ Optimality of A*

* Impact of a better heuristic on A*

+ Why does consistency guarantee optimal paths for A* with strict
expanded list

+ Algorithmic issues for A*

* These are not required and are provided for those interested in pursuing
these topics.

s g

Slide5.7.2
Optimality of A*

First topic:
+ Assume A* has expanded a path to goal node G

Let's go through a quick proof that A* actually finds the optimal path. Start by assuming that A* has
selected anode G.

tp-Spring 022 (E

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (45 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.7.3

Then, we know from the operation of A* that it has expanded all nodes N whose cost f(N) is strictly less .
than the cost of G. We also know that since the heuristic is admissible, its value at a goal node must be 0 + Assume A” has expanded a path to goal node G
and thus, f(G) = g(G)+h(G) = g(G). Therefore, every unexpanded node N must have f(N) greater or equal + Then, A* has expanded all nodes N where f(N) < f(G). Since his

to the actual path length to G.

Optimality of A*

+ Assume A* has expanded a path to goal node G

+ Then, A* has expanded all nodes N where f(N) < f(G). Since his
admissible, f(G) = g(G). So, every unexpanded node has f(N) = g(G).

+ Since h is admissible, we know that any path through N that reaches a
goal node GP has value g(G°) = f(N)

tp~ Spring 012« 4

4

Slide5.7.5

Combining these two statements we see that the path length to any other goal node G' must be greater or

equal to the path length of the goal node A* found, that is, G.

Impact of better heuristic

* Leth* be the “perfect” heuristic — returns actual path cost to goal.

tp-Spring 026

4

Optimality of A*

admissible, f(G) = g(G). So, every unexpanded node has f(N) = g(G).

wesmRd

Slide5.7.4

Since h is admissible, we know that any path through an unexpanded node N that reaches some alternate
goal node G' must have atotal cost estimate f(N) that is not larger than the actual cost to G, that is, g(G').

Optimality of A*

» Assume A has expanded a path to goal node G

* Then, A* has expanded all nodes N where f(N) < f(G). Since his
admissible, f(G) = g(G). So, every unexpanded node has f(N) = g(G).

+ Since h is admissible, we know that any path through N that reaches a
goal node GO has value g(G°) = f(N)

+ So, for every unexpanded node N, we have g(G®) = f(N) = g(G). That
is, any goal reachable from those nodes has a path that is at least as
long as the one we found.

tp- Spring 0125 (E

Slide5.7.6
Next topic:

We can also show that a better heuristic in general leads to improved performance of A* (or at least no
decrease). By performance, we mean number of nodes expanded. In general, there is atradeoff in how
much effort we do to compute a better heuristic and the improvement in the search time due to reduced
number of expansions.

Let's postulate a"perfect” heuristic which computes the actual optimal path length to agoal. Call this
heuristic h*.

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (46 of 52)3/13/2007 8:49:44 PM

Slide5.7.7

Then, assume we have a heuristic hy that is always numerically less than another heuristic hy, which is

(by admissibility) less than or equal to h*.

Impact of better heuristic

+ Leth* be the “perfect” heuristic — returns actual path cost to goal.
+ If hy(N) < hy(N) = h*(N) for all non-goal nodes, then h, is a better
heuristic than h,
* If A;*uses h,, and A,* uses h,, then every node expanded by A,* is also
expanded by A*
* £,(G)=f,(G)=g(G), so both A;* and A,* expand all nodes with f < g(G)
* fi(N)=g(N)+hy(N) < H(N}=g(N)}+h,(N) < g(G)

tp~ Spring 028 (E

Slide5.7.9

So, A* 4 expands at least as many nodes as A*,. We say that A*, is better informed than A*; to refer to

this situation.

Impact of better heuristic

+ Leth* be the “perfect” heuristic — returns actual path cost to goal.
* If hy(N) < hy(N) = h*(N) for all non-goal nodes, then h, is a better
heuristic than h,
* If A;*uses h;, and A,* uses h,, then every node expanded by A,*is also
expanded by A*
* f,(G)=f,(G)=g(G), so both A,* and A,* expand all nodes with f < g(G)
* fi(N)=g(N)+hy(N) < H(N)=g(N)}+h,(N) = g(G)
+ Thatis, A;* expands at least as many nodes as A,* and we say that A,*
is better informed than A,*.
+ Note that A* with any non-zero admissible heuristic is better informed
(and t:erefore typically expands fewer nodes) than Uniform Cost
search.

- Soring 02+ 10

¢

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Impact of better heuristic

* Leth*be the “perfect” heuristic — returns actual path cost to goal.
+ Ifhy(N) < hy(N) < h*(N) for all non-goal nodes, then h, is a better
heuristic than h,

W

Slide5.7.8

The key observation isthat if we have two versions of A*, one using h, and the other using h,, then
every node expanded by the second oneis also expanded by the first.

This follows from the observation we have made earlier that at a goal, the heuristic estimates all agree
(they are al 0) and so we know that both versions will expands al nodes whose value of f isless than the
actual path length of G.

Now, every node expanded by A*,, will have a path cost no greater than the actual cost to the goal G.
Such anode will have asmaller cost using h; and so it will definitely be expanded by A*; aswell.

Impact of better heuristic

* Leth* be the “perfect” heuristic — returns actual path cost to goal.
+ 1fhy(N) < hy(N) < h*(N) for all non-goal nodes, then h, is a better
heuristic than h,
* If A;*uses h,, and A,* uses h,, then every node expanded by A,*is also
expanded by A*
* £,(G)=f(G)=g(G), so both A;* and A,* expand all nodes with f < g(G)
* L(N)=gN)+hy(N) < £(NJ=g(N)+h,(N) < ¢(G)
+ Thatis, A;* expands at least as many nodes as A,* and we say that A,*
is better informed than A,*.

tp- Spring 0129 (E

Slide5.7.10

Since uniform-cost search issimply A* with aheuristic of 0, we can say that A* is generally better
informed than UC and we expect it to expand fewer nodes. But, A* will expend additional effort
computing the heuristic value -- agood heuristic can more than pay back that extra effort.

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (47 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.7.11) .
Consistency — Non-decreasing f

O®»—O®

+ N;is a descendant of N; in the search tree
-+ 1(N) = g(N)*h(state(N))
+ f(N) = g(N)+h(state(N)) = g(N;+c(N;) +h(state(N,))

New topic:

Why does consistency allow us to guarantee that A* will find optimal paths? The key insight is that
consistency ensures that the f values of expanded nodes will be non-decreasing over time.

Consider two nodes N; and Nj such that the latter is a descendant of the former in the search tree. Then,
we can write out the values of f as shown here, involving the actual path length g(N;), the cost of the
edge between the nodes c(N;, N;) and the heuristic values of the two corresponding states.

tp-Spring 02+ 11 (E

Slide5.7.12
Consistency — Non-decreasing f

O®»—O®

N; is a descendant of N; in the search tree

£(N) = g(N)#histate(N))

f(N) = g(N)+h(state(N)) = g(N)+c(N;,N)+h(state(N;))

By consistency, h(state(N) < h(state(N;))+c(N,N)

Then, f(N)) - f(N)

+ Thus, when A*, with a consistent heuristic, expands a node, all of its
descendants have f values greater or equal to the expanded node (as do all the
nodes left on Q). So, the f values of expanded nodes can never decrease.

By consistency of the heuristic estimates, we know that the heuristic estimate cannot decrease more than
the edge cost. So, the value of f in the descendant node cannot go down; it must stay the same or go up.

By this reasoning we can conclude that whenever A* expands a node, the new nodes' f values must be
greater or equal to that of the expanded node. Also, since the expanded node must have had an f value
that was a minimum of the f valuesin Q, this means that no nodesin Q after this expansion can have a
lower f value than the most recently expanded node. That is, if we track the series of f values of
expanded nodes over time, this seriesis non-decreasing.

- Soring 02+ 12 (E

Slide5.7.13
Non-decreasing f — first path is optimal
Now we can show that if we have nodes expanded in non-decreasing order of f, then the first time we
expand a node whose state is s, then we have found the optimal path to the state. If you recall, thiswas
the condition that enabled us to use the strict Expanded lit, that is, we never need to re-visit (or re-
expand) a state.

+ A’ with consistent heuristic expands nodes N in non-decreasing order of f(N)

+ Then, when a node N is expanded, we have found the shortest path to the
corresponding s=state(N)

tp- Spring 02 + 13 (E

Slide5.7.14
Non-decreasing f — first path is optimal

+ A" with consistent heuristic expands nodes N in non-decreasing order of f(N)

+ Then, when a node N is expanded, we have found the shortest path to the
corresponding s=state(N)

+ Imagine that we later found another node N° with the same corresponding state s
then we know that

. f(N9) 2 (N)
+ f(N) = g(N) + h(s)
+ f(N%) = g(N°) + h(s)

- Spring 02+ 14

¢

To provethis, let's assume that we later found another node N' that corresponds to the same state as a
previously expanded node N. We have shown that the f value of N' is greater or equal that of N. But,
since the heuristic values of these nodes must be the same - since they correspond to the same underlying
graph state - the differencein f values must be accounted by a difference in actual path length.

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (48 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.7.15

So, we can conclude that the second path cannot be shorter than the first path we already found, and so
we can ignore the new path!

constant time access. Q also implemented as a hash table.

1. Pulling paths off of Q,

Non-decreasing f — first path is optimal

+ A" with consistent heuristic expands nodes N in non-decreasing order of f(N)
« Then, when a node N is expanded, we have found the shortest path to the
corresponding s=state(N)
« Imagine that we later found another node N° with the same corresponding state s
then we know that
+ f(N%) 21(N)
* f(N)=g(N) * h(s)
* (N9 =g(N°) + h(s)
« So, we can conclude that
* a(N%) 2g(N)
+ And we can safely ignore the second path to s as we would with the strict
Expanded list.

lp+ Spring 02+ 15 (E
. . . Slide 5.7.16
Uniform Cost + Strict Expanded List
(order of time growth in worst case) Final topic:
Our simple algorithm can be summarized as follows:
1. Take the best search node from Q Let's analyze the behavior of uniform-cost search with a strict Expanded List. Thisagorithm is very
2. Are we there yet? similar to the well known Dijkstra's algorithm for shortest pathsin a graph, but we will keep the name
3. Add path extensions to Q we have been using. This analysiswill apply to A* with astrict Expanded list, since in the worst case
A strict E led “list” is impl ited as a hash table, which gives they are the same algorithm.

To simplify our approach to the analysis, we can think of the algorithm as boiled down to three steps.

2. Checking whether we are done and
3. Adding the relevant path extensionsto Q.

In what follows, we assume that the Expanded list is not a"rea" list but some constant-time way of
oo f checking that a state has been expanded (e.g., by looking at a mark on the state or via a hash-table).

We also assume that Q isimplemented as a hash table, which has constant time access (and insertion)

cost. Thisis so we can find whether a node with a given state is already on Q.
Slide 5.7.17

Later, it will become important to distinguish the case of "sparse” graphs, where the states have a nearly
constant number of neighbors and "dense" graphs where the number of neighbors grows with the number
of states. In the dense case, the total number of edgesis O(N2), which is substantial.

Uniform Cost + Strict Expanded List
(order of time growth in worst case)
Our simple algorithm can be summarized as follows:
1. Take the best search node from Q

2. Are we there yet?
3. Add path extensions to Q
A strict E: led “list” is impl ited as a hash table, which gives

constant time access. Q also ir'nplemented as a hash table.
Assume we have a graph with N nodes and L links. Graphs where nodes have O(N)

links are dense. Graphs where the nodes have a nearly constant number of links
are sparse. For dense graphs, L is O(N?).

b

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (49 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.7.18
Uniform Cost + Strict Expanded List
(order of time growth in worst case) So, let's ask the question, how many nodes are taken from Q (expanded) over the life of the algorithm (in
Our simple algorithm can be summarized as follows: the worst case)? Here we assume that when we add a node to Q, we check whether anode already exists
1. Take the best search node from Q for that state and keep only the node with the shorter path. Given this and the use of a strict Expanded
2. Are we there yet? list, we know that the worst-case number of expansionsis N, the total number of states.
3. Add path extensions to Q
A strict E: led “list” is impl ited as a hash table, which gives
constant time access. Q also implemented as a hash table.
Assume we have a graph with N nodes and L links. Graphs where nodes have O(N)
links are dense. Graphs where the nodes have a nearly constant number of links
are sparse. For dense graphs, L is O(N?).
Nodes taken from Q ? O(N)
e g
Slide5.7.19
Uniform Cost + Strict Expanded List
What's the cost of expanding a node? Assume we scan Q to pick the best paths. Then the cost is of the (order of time growth in worst case)
order of the number of pathsin Q, which is O(N) also, since we only keep the best path to a state. Our simple algorithm can be summarized as follows:
1. Take the best search node from Q
2. Are we there yet?
3. Add path extensions to Q
A strict Expanded “list” is impl ited as a hash table, which gives
constant time access. Q also implemented as a hash table.
Assume we have a graph with N nodes and L links. Graphs where nodes have O(N)
links are dense. Graphs where the nodes have a nearly constant number of links
are sparse. For dense graphs, L is O(N?).
Nodes taken from Q ? O(N)
Cost of picking a node from Q using linear scan? O(N)
fp » Spring 02+ 19 (E
Slide5.7.20
Uniform Cost + Strict Expanded List
(order of time growth in worst case) How many times do we (attempt to) add paths to Q? Well, since we expand every state at most once and
Our simple algorithm can be summarized as follows: since we only add paths to direct neighbors (links) of that state, then the total number is bounded by the
1. Take the best search node from Q total number of linksin the graph.
2. Are we there yet?
3. Add path extensions to Q
A strict E led “list” is impl ited as a hash table, which gives

constant time access. Q also implemented as a hash table.

Assume we have a graph with N nodes and L links. Graphs where nodes have O(N)
links are dense. Graphs where the nodes have a nearly constant number of links
are sparse. For dense graphs, L is O(N?).

Nodes taken from Q ? O(N)
Cost of picking a node from Q using linear scan? O(N)
Attempts to add nodes to Q (many are rejected)? o)
Hp- Soring 02+ 20 (E
Sliide5.7.21

Uniform Cost + Strict Expanded List

Adding to the Q, assuming it is a hash table, as we have been assuming here, can be done in constant (order of time growth in worst case)
time. Our simple algorithm can be summarized as follows:

1. Take the best search node from Q
2. Are we there yet?
3. Add path extensions to Q

Assume strict Expanded “list” is implemented as a hash table, which gives
constant time access. Q also implemented as a hash table.

Assume we have a graph with N nodes and L links. Graphs where nodes have O(N)
links are dense. Graphs where the nodes have a nearly constant number of links
are sparse. For dense graphs, L is O(N?).

Nodes taken from Q ? O(N)
Cost of picking a node from Q using linear scan? O(N)
Attempts to add nodes to Q (many are rejected)? o)
Cost of adding a node to Q ? o(1)
ip » Spring 02 + 21 (E

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (50 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Slide5.7.22
A*
(order of time growth in worst case) Putting it all together gives us atotal cost on the order of O(N2+L) which, since L isat worst O(N2) is
Our simple algorithm can be summarized as follows: essentially O(NZ).
1. Take the best search node from Q
2. Are we there yet?
3. Add path extensions to Q
A strict E: led “list” is impl ited as a hash table, which gives

constant time access. Q also implemented as a hash table.

Assume we have a graph with N nodes and L links. Graphs where nodes have O(N)
links are dense. Graphs where the nodes have a nearly constant number of links
are sparse. For dense graphs, L is O(N?).

Nodes taken from Q ? O(N)
Cost of picking a node from Q using linear scan? O(N)
Attempts to add nodes to Q (many are rejected)? o(L)
Cost of adding a node to Q ? o(1)
Total cost ? O(N2+1)
b g
Slide5.7.23

Should we use a Priority Queue?
If you know about priority queues, you might think that they are natural asimplementation of Q, since

one can efficiently find the best element in such a quee. + Apriority queue is a data structure that makes it efficient to identify the

“best” element of a set. A PQis typically implemented as a balanced tree.

+ The time to find best element in a PQ grows as O(log N) for a set of size N.
This is very much better than N for large N. Also, note that even if we don’t
discard paths to Expanded nodes, the access is still O(log N), since O(log
N?)=0(log N).

tp- Spring 02+ 23 (E

Slide5.7.24
Should we use a Priority Queue?
Note, however, that adding elements to such a Q is more expensive than adding elementsto alist or a
hash table. So, whether it's worth it depends on how many additions are done. As we said, thisis order of
L, the number of links.

+ A priority queue is a data structure that makes it efficient to identify the
“best” element of a set. A PQ is typically implemented as a balanced tree.

+ The time to find best element in a PQ grows as O(log N) for a set of size N.
This is very much better than N for large N. Also, note that even if we don’t
discard paths to Expanded nodes, the access is still O(log N), since O(log
N2)=0O(log N).

+ However, adding elements to a PQ also has time that grows as O(log N).

« Ouralgorithm does up to N “find best” operations and it does up to L
“add” operations. If Qs a PQ, then cost is O(N*log N + L*log N)

- Soring 02+ 24 (E

Slide5.7.25
Should we use a Priority Queue?

For adense graph, where L is O(N2), then the priority queue will not be worth it. But, for a sparse graph

it will « Apriority queue is a data structure that makes it efficient to identify the

“best” element of a set. A PQis typically implemented as a balanced tree.
+ The time to find best element in a PQ grows as O(log N) for a set of size N.
This is very much better than N for large N. Also, note that even if we don’t
discard paths to Expanded nodes, the access is still O(log N), since O(log
N?)=0O(log N).
+ However, adding elements to a PQ also has time that grows as O(log N).

+ Ouralgorithm does up to N “find best” operations and it does up to L
“add” operations. IfQis a PQ, then cost is O(N*log N + L*log N)

« If graph is dense, and L is O(N?), then a PQ is not advisable.

+ If graph is sparse (the more common case), and L is O(N), then a PQis
highly desirable.

Ip+ Spring 02+ 25 ‘(E

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (51 of 52)3/13/2007 8:49:44 PM

6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

Cost and Performance

Searching a tree with N nodes and L links

Search Worst Time | Worst Time | Worst | Guaranteed to find
Method (Dense) (Sparse) Space | shortest path
Uniform Cost

A (o] O(N log N) O(N) Yes

Searching a tree with branching factor b and depth d

L=N=b

Worst case time is proportional to number of nodes created
Worst case space is proportional to maximal length of Q (and Expanded)

Ip+Soring 02+ 25

Slide5.7.26

Here we summarize the worst-case performance of UC (and A*, which is the same). Note, however, that
we expect A* with agood heuristic to outperform UC in practice since it will expand at most as many
nodes as UC. The worst case cost (with an uninformative heuristic) remains the same.

By the way, in talking about space we have focused on the number of entriesin Q but have not
mentioned the length of the paths. One might think that this would actually be the dominant factor. But,
recall that we are unrolling the graph into the search tree and each node only needs to have alink to its
unique ancestor in the tree and so a node really requires constant space.

As before, you can think of the performance of these algorithms as alow-order polynomial (N2) or as an
intractable exponential, depending on how one describes the search space.

file:///CJ/Documents%20and%20Settings/Admini strator/My%...aching/6.034/07/l essons/ Chapter5/search-handout-07.html (52 of 52)3/13/2007 8:49:44 PM

	Local Disk
	6.034 Artificial Intelligence. Copyright © 2007 by Massachusetts Institute of Technology. All rights reserved

