6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

6.034 Notes: Section 9.1

Slide9.1.1

We've now spent afair bit of time learning about the language of first-order logic and the mechanisms
of automatic inference. And, we've also found that (a) it is quite difficult to write first-order logic and
(b) quite expensive to do inference. Both of these conclusions are well justified. Therefore, you may be
wondering why we spent the time on logic.

We can motivate our study of logic in avariety of ways. For one, it isthe intellectua foundation for al
other ways of representing knowledge about the world. As we have aready seen, the Web Consortium
has adopted a logical language for its Semantic Web project. We also saw that airlines use alanguage
not unlike FOL to describe fare restrictions. We will see later when we talk about natural language
understanding that logic also plays akey role.

Thereis another practical application of logic that is reasonably widespread namely logic
programming. In this section, we will look briefly at logic programming. Later, when we study natural
language understanding, we will build on these ideas.

L. . Slide9.1.2
Logic in Practice

Rules and Logic Programming

6.034 - Spring 03« 1 (E

We have seen that the language of logic is extremely general, with much of the power of natural

¢ Language of logic is extremely powerful.

e Say what's true, not how to use it.
« V X,y (3 z Parent(x,z) A Parent(z,y)) ++ GrandParent(x,y)
- Given parents, find grandparents

language. One of the key characteristics of logic, as opposed to programming languages but like natural
languages, is that in logic you write down what's true about the world, without saying how to useit. So,
for example, one can characterize the relationship between parents and grandparents in this sentence
without giving an algorithm for finding the grandparents from the grandchildren or a different algorithm
for finding the grandchildren given the grandparents.

- Given grandparents, find parents

6.034 - Spring 03 » 2 E@

Slide9.1.3

However, this very power and lack of specificity about algorithms means that the general methods for
performing computations on logical representations (for example, resolution refutation) are hopelessly
inefficient for most practical problems.

Logic in Practice

e Language of logic is extremely powerful.

¢ Say what's true, not how to use it.
- Vx,y (3 z Parent(x,z) A Parent(z,y)) < GrandParent(x,y)
« Given parents, find grandparents
« Given grandparents, find parents

e But, resolution theorem-provers are too inefficient!

6.034 - Spring 03 » 3

4

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (1 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide9.1.4
Logic in Practice There are, however, approaches to regaining some of the efficiency while keeping much of the power of
. the representation. These approaches involve both limiting the language as well as simplifying the
* Language of logic is extremely powerful. inference algorithms to make them more predictable. Similar ideas underlie both logic programming
* Say what's true, not how to use it. and rule-based systems. We will bias our presentation towards |ogic programming.
« VX, Y (3 z Parent(x,z) A Parent(z,y)) +» GrandParent(x,y)
- Given parents, find grandparents
« Given grandparents, find parents
e But, resolution theorem-provers are too inefficient!
e To regain practicality:
- Limit the language
- Simplify the proof algorithm
* Rule-Based Systems
e Logic Programming

som-spingo3es

Slide9.1.5
In logic programming we will also use the clausal representation that we derived for resolution Horn Clauses
refutation. However, we will limit the type of clauses that we will consider to the class called Horn

clauses. A clauseis Horn if it has at most one positive literal. In the examples below, we show literals * Aclause is Horn if it has at most one positive

: :) . ; " . : literal
without variables, but the discussion applies both to propositional and first order logic. « ~P,V..VP,VQ (Rule)
There are three cases of Horn clauses: +Q (Fact)
s = P,vV..VaP, (Consistency Constraint)

)) o L » We will not deal with Consistency Constraints
. Aruleisaclause with one or more negative literals and exactly one positive literal. Y ou

can see that thisis the clause form of an implication of theformP; ~ ... ~ P, ->
Q that is, the conjuction of the Psimplies Q.

. A fact isaclause with exactly one positive literal and no negative literals. We generally
will distinguish the case of aground fact, that is, aliteral with no variables, from the
general case of aliteral with variables, which is more like an unconditional rule than what
onewould think of asa"fact".

. Ingeneral, thereis another case, known as a consistency constraint when the clause has
no positive literals. We will not deal with these further, except for the special case of a
conjunctive goal clause which will take this form (the negation of a conjuction of literals
isaHorn clause with no positive literal). However, goal clauses are not rules.

6.034 - Spring 03+ 5 (E

Horn Clauses Slide9.1.6 _ _ _ _
There are many notations that are in common use for Horn clauses. We could write them in standard
* A clause is Horn if it has at most one positive logical notation, either as clauses, or asimplications. In rule-based systems, one usually has some form
literal of equivalent "If-Then" syntax for the rules. In Prolog, which is the most popular logic programming
e =P, v..v=P,vQ(Rule) language, the clauses are written as a sort of reverse implication with the ":-" instead of "<-".
. Fact
. 9"1 V.VaP, ECons)istency Constraint) Wewill call the Q (positive) literal the consequent of arule and call the P, (negative) literals the
e We will not deal with Consistency Constraints antecedents. Thisis terminology for implications borrowed from logic. In Prolog it is more common
« Rule Notation to cal Q the head of the clause and to call the P literals the body of the clause.

*P,A..AP,>Q (Logic)
«If P, ... P, ThenQ (Rule-Based System)
«Q:-Py ., P, (Prolog)

o P, are called antecedents (or body)

* Q is called the consequent (or head)

som-sprgozes

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (2 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide9.1.7

Note that not every logical statement can be written in Horn clause form, especially if we disallow Limitations
clauses with zero positive literal's (consistency constraints). Importantly, one cannot have a negation on
theright hand side of an implication. That is, we cannot have rules that conclude that something is not
true! Thisis areasonably profound limitation in general but we can work around it in many useful *P—-Q

situations, which we will discuss later. Note that because we are not dealing with consistency constraints « = PVv-Q: Consistency constraint

(al negative literals) we will not be able to deal with negative facts either.

Limitations

e Cannot conclude negation
*P—>-Q
« =PV - Q: Consistency constraint
« — P : Consistency constraint

e Cannot conclude (or assert) disjunction
*P,AP, - Q;VQ,
cQVQ,

« These are not Horn

6.034 - Spring 03+ 8

¢

Slide9.1.9

It turns out that given our simplified language, we can use a simplified procedure for inference, called Inference: Backchaining
backchaining, which is basically a generalized form of Modus Ponens (one of the "natural deduction”

rules we saw earlier).

Backchaining is relatively simple to understand given that you've seen how resolution works. We start
with aliteral to "prove", which we call C. We will also use Green'strick (asin Chapter 6.3) to keep track

of any variable bindingsin C during the proof.

We will keep astack (first in, last out) of goals to be proved. We initialize the stack to have C (first)

followed by the Answer literal (which we write as Ans).

Inference: Backchaining

* To “prove” a literal C
« Push C and an Ans literal on a stack

= Repeat until stack only has Ans literal or no
actions available.

-Pop literal L off of stack

6.034 - Spring 03 » 10

¢

e Cannot conclude negation

» — P : Consistency constraint

som-spimg03e7

Slide9.1.8

Similarly, if we have adisjuction on the right hand side of an implication, the resulting clause is not
Horn. In fact, we cannot assert a disjunction with more than one positive litera or adisjuction of all
negative literals. The former is not Horn while the latter is a consistency constraint.

e To “prove” a literal C
» Push C and an Ans literal on a stack

6.034 - Spring 03+ 9 (E

Slide9.1.10

The basic loop isto pop aliteral (L) off the stack until either (a) only the Ansliteral remains or (b) there
are no further actions possible. The first case corresponds to a successful proof; the second case
represents a failed proof.

A word of warning. Thisloop does not necessarily terminate. We will see examples later where simple
sets of rules lead to infinite loops.

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (3 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide9.1.11

Given alitera L, we look for afact that unifies with L or a rule whose consequent (head) unifieswith L.
If we find a match, we push the antecedent literals (if any) onto the stack, apply the unifier to the entire
stack and then rename all the variables to make sure that there are no variable conflicts in the future.
There are other ways of dealing with the renaming but this one will work.

In general, there will be more than one fact or rule that could match L; we will pick one now but be
prepared to come back to try another one if the proof doesn't work out. More on this later.

Inference: Backchaining

e To “prove” a literal C
= Push C and an Ans literal on a stack
« Repeat until stack only has Ans literal or no
actions available.
—Pop literal L off of stack
—Choose [with backup] a rule (or fact) whose
consequent unifies with L
- Push antecedents (in order) onto stack
- Apply unifier to entire stack
- Rename variables on stack
-If no match, fail [backup to last choice]

6.034 - Spring 03 » 12

¢

Slide9.1.13

If you think about it, you'll notice that backchaining isjust our familiar friend, resolution. The stack of
goals can be seen as negative literals, starting with the negated goal. We don't actually show literals on

the stack with explicit negation but they are implicitly negated.

At every point, we pair up anegative literal from the stack with a positive literal (the consequent) from a
fact or rule and add the remaining negative literals (the antecedents) to the stack.

Proof Strategy

® Depth-First search for a proof
* Order matters
« Rule order
—try ground facts first
—then rules in given order
« Antecedent order
—left to right
* More predictable, like a program, less like logic

6.034 - Spring 03 » 14

¢

Inference: Backchaining

* To “prove” a literal C
= Push C and an Ans literal on a stack
» Repeat until stack only has Ans literal or no
actions available.
—Pop literal L off of stack
—-Choose [with backup] a rule (or fact) whose
consequent unifies with L
- Push antecedents (in order) onto stack
- Apply unifier to entire stack
- Rename variables on stack

som-spirgo3ei g

Slide9.1.12
If no match can be found for L, we fail and backup to try the last choice that has other pending matches.

Backchaining and Resolution

e Backchaining is just resolution
e To prove C (propositional case)
* NegateC= - C
* Findrule-P;,v..v=P,vC
* Resolvetoget - P, v..V P,
« Repeat for each negative literal

¢ First order case introduces unification but otherwise
the same.

6.034 - Spring 03 » 13 (E

Slide9.1.14

When we specified backchaining we did it with a particular search algorithm (using the stack), which is
basically depth-first search. Furthermore, we will assume that the facts and rules are examined in the
order in which they occur in the program. Also that literals from the body of arule are pushed onto the
stack in reverse order, os that the one that occursfirst in the body will be the first popped off the stack.

Given these ordering restrictions, it is much easier to understand what alogic program will do. On the
other hand, one must understand that what it will do is not what a general theorem prover would do with
the same rules and facts.

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (4 of 40)5/11/2007 2:25:59 PM

Slide9.1.15

Time for an example. Let's ook at the following database of facts and rules. The first two entries are
ground facts, that A is Father of B and B is Mother of C. The third entry defines a grandparent rule that
we would writein FOL as:

@& . @ @. P(x,y) ™ P(y,z) -> GandP(x, z)

Our ruleissimply this rule written with the implication pointing "backwards'. Also, our rule language
does not have quantifiers; al the variables are implicitly universally quantified.

In our rule language, we will modify our notational conventions for FOL. Instead of identifying
constants by prefixing them with $, we will indicate variables by prefixing them with 2. The rationale for
thisisthat in our logic examples we had lots more variables than constants, but that will be different in
many of our logic-programming examples.

The next two rules specify that a Father is a Parent and a Mother is a parent. In usual FOL notation, these
would be:

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

(LN O

. Father(A,B)
. Mother(B,C)
. GrandP(?x,?z) :- Parent(?x,?y) ,Parent(?y,?z)
. Parent(?x,?y) :- Father(?x,?y)
. Parent(?x,?y) : - Mother(?x,?y)

Example

; ground fact
; ground fact

cos-spring 0315 f

@& . @ F(xy) ->P(xy)
& . @ Mxy) ->Pxy)
Example Slide 9.1.16
1. Father(A,B) ; ground fact T N
2. Mother(B,C) ; ground fact contradiction from the negation of the goal:
3. GrandP(?x,?z):- Parent(?x,?y),Parent(?y,?z)
4. Parent(?x,?y):- Father (?x,?y)
5. Parent(?x,?y) :- Mother (?x,?y) ~] g X Gandp(g C)
Prove:

GrandP (2g,C) , Ans(2g)

som-sprgosets

Slide9.1.17

Y ou can see that the grandparent goal literal unifies with the consequent of rule 3 using the unifer { ?
x/ ?g, ?z/ C }. So, we push the antecedents of rule 3 onto the stack, apply the unifier and then
rename all the remaining variables, asindicated. The resulting goal stack now has two Parent literals and
the Ans literal. We proceed as before by popping the stack and trying to unify with the first Parent literal.

Now, we set out to find the Grandparent of C. With resolution refutation, we would set out to derive a

whose clause form is~G- andP(g, C) . Thelist of literalsin our goal stack are implicitly negated, so
we start with Gr andP(g, C) on the stack. We have also added the Ans literal with the variable we
are interested in, ?g, hopefully the name of the grandparent.

Now, we set out to find afact or rule consequent literal in the database that matches our goal literal.

[L NN

. Father(A,B)

Example

; ground fact

. Mother(B,C) ; ground fact
. GrandP(?x,?z) :- Parent(?x,?y) ,Parent(?y,?z)
. Parent(?x,?y) :- Father(?x,?y)

. Parent(?x,?y) : - Mother(?x,?y)

Prove:
GrandP(2g,C), Ans(?g)

[3,?x/?g,?z/C; 2y=>?y,,?9=>?q,]
Parent(?g,,?y,), Parent(?y,,C), Ans(?g,)

som-spngo3er

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (5 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide9.1.18
Example The first Parent goal literal unifies with the consequent of rule 4 with the unifier shown. The antecedent

1. Father(A,B) i ground fact (the Fat her literal) is pushed on the stack, the unifier is applied and the variables are renamed.

2. Mother(B,C) ; ground fact

3. GrandP(?x,?z) :- Parent(?x,?y) ,Parent(?y,?z) . .

4. Parent(?x,?y) :- Father(?x,?y) Note that there are two Parent rules, we use the first one but we have the other one available should we

5. Parent(?x,?y):- Mother(?x,?y) fail with thisone.

. Prove:

GrandP(?g,C), Ans(?qg)
[3,?x/?g,?2/C; ?y=>?y,,?g=>?q,]
. Parent(?g,,?y,), Parent(?y,,C), Ans(?g,)
[4,2x/2g,,?y/?Y,; ?2¥;=>?¥,,2G,=>?g,]
. Father(?g,,?y,) , Parent(?y,,C), Ans(?g,)
6.034 - Spring 03 » 18 ‘(E

Slide9.1.19
The Fat her god literal matchesthefirst fact, which now unifies the ?g variable to A and the % Example
variable to B. Note that since we matched afact, there are no antecedents to push on the stack (asin 1. Father(a,B) i ground fact

. . it e 2. Mother(B,C) ; ground fact
resolution with a unit-length clause). We apply the unifier, rename and proceed. 3. GrandP(?x,7z) i~ Parent (2x,7y) Parent (?y,?z)

4. Parent(?x,?y):- Father(?x,?y)
5. Parent(?x,?y) :- Mother(?x,?y)

* Prove:
GrandP(?g,C), Ans(?g)

[3,2x/?g,?22/C; 2y=>?y,,?g=>?g,]

¢« Parent(?g,,?y,), Parent(?y,,C), Ans(?g,)
[4,2x/2g,,2¥/%y,7 2¥,=>?Y,,?9,=>?0,]

+ Father(?g,,?y,), Parent(?y,,C), Ans(?g,)
[1,2g,/A,%y,/B]

. Parent(B,C), Ans(A)

6.034 - Spring 03 » 19 ,(E

Slide9.1.20
Example Now, we can match the Parent(B,C) goal literal to the consequent of rule 4 and get anew goal (after
1. Father(a,B) i ground fact applying the substitution to the antecedent), Fat her (B, C) . However we can see that this will not
2. Mother(B,C) ; ground fact H R 5
3. GrandP(?x,?z):- Parent(?x,?y) Parent(?y,?z) match anything in the database and we get afailure.
4. Parent(?x,?y) :- Father(?x,?y)
5. Parent(?x,?y) :- Mother(?x,?y)

Prove:
GrandP(?g,C), Ans(?q)
- [3,2x/?g,?z/C; ?y=>?y,,?9=>?g;]
. Parent(?g,,?y,), Parent(?y,,C), Ans(?g,)
- [4,2x/?g,,?¥/?y;7 ?2¥,=?Y,,29,=>24,]
. Father(?g,,?y,), Parent(?y,,C), Ans(?g,)
- [1,?g,/A,?y,/B]
+ Parent(B,C), Ans(A)

- [4,?x/B,?y/C]
+ Father(B,C), Ans(A)
¢ <fail>
6.034 - Spring 03 » 20 (ﬁ
Slide9.1.21
The last choice we made that has a pending alternative is when we matched Parent(B,C) to the Example
consequent of rule 4. If we instead match the consequent of rule 5, we get an alternative literal to try, 1. Father(a,B) i ground fact
2. Mother(B,C) ; ground fact
namely Mot her (B’ C) . 3. GrandP(?x,?z) :- Parent(?x,?y),Parent(?y,?z)
4. Parent(?x,?y):- Father(?x,?y)
5. Parent(?x,?y) :- Mother(?x,?y)
. Prove:

GrandP(?g,C), Ans(?q)
- [3,?x/?g,?2/C; ?2y=>?y,,?g=>7?qg,]
. Parent(?g,,?y,), Parent(?y,,C), Ans(?qg,)
- [4,2x/?g,,?¥/?y, i ?2¥,=27?Y,,?9,;=>?G,]
. Father(?g,,?y,), Parent(?y,,C), Ans(?g,)
- [1,2g,/A,?y,/B]
+ Parent(B,C), Ans(a)

- [4,?x/B,?y/C]
¢+ Father(B,C), Ans(A)
+ <fail>

- [5,?x/B,?y/C]

+ Mother(B,C), Ans(A)

6.034 - Spring 03 » 21 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (6 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide9.1.22

Example This matches fact 2. At this point there are no antecedents to add to the stack and the Ansliteral is on the
. Father(a,B) i ground fact top of the stack. Note that the binding of the variable ?g to A isin fact the correct answer to our original
. Mother(B,C) ; ground fact qUeStI on
. GrandP(?x,?z) :- Parent(?x,?y) ,Parent(?y,?z) :
. Parent(?x,?y) :- Father(?x,?y)
. Parent(?x,?y) :- Mother (?x,?y)

oo WwN R

Prove:
GrandP(?g,C), Ans(?q)
[3,?x/?g,?22/C; 2y=>?y,,?g=>?g,]
Parent(?g,,?y,), Parent(?y,,C), Ans(?g,)
[4,2x/2g,,2¥/?Y,; 2¥;=>?¥,,29,=>20,]
Father(?g,,?y,) , Parent(?y,,C), Ans(?g,)
[1,?g,/A,%y,/B]
Parent(B,C), Ans(A)
[4,?x/B,?y/C]
Father(B,C), Ans(A)
<fail>
- [5,?x/B,?y/C]
Mother(B,C), Ans(A)
[21

Ans (A) 6.034 - Spring 03 » 22 ‘4

Slide9.1.23
Another way to look at the process we have just gone through is as aform of tree search. In this search Proof Tree
space, the states are the entriesin the stack, that is, the literal's that appear on our stack. The edges
(shown with a green dot in the middle of each edge) are the rules or facts. However, thereis one

complication: arule with multiple antecedents generates multiple children, each of which must be s Eeopns Ryl Bl
solved. Thisisindicated by the arc connecting the two descendants of rule 3 near the top of the tree. . EEC), A

F(B,C), Ans(Aa)
<fail>
M(B,C), Ans(a)

aawm e

Ge (2g,C)

Thistype of treeis called an AND-OR tree. The OR nodes come from the choice of arule or fact to PR P (2946 C e

match to agoal. The AND nodes come from the multiple antecedents of arule (all of which must be

proved).

Y ou should remember that such atree isimplicit in the rules and facts in our database, once we have A . 5

been given agoal to prove. Thetreeis not constructed explicitly; it isjust away of visualizing the search) S S

Let's go through our previous proof in this representation, which makes the choices we've made more k.8 W& HiA 87 B &

explicit. We start with the GrandP goal at the top of the tree.

6.034 - Spring 03 » 23 4

N Slide9.1.24
Proof Tree f ki el We match that goal to the consequent of rule 3 and we create two subgoals for each of the antecedents
wirg:ch 5 meex,2y) (after carrying out the substitutions from the unification). We will ook at the first one (the one on the
|eft) next.
, Ans(?g;)
, Ans(?g,)
a0, e
<fail>
M(B,C), Ans(A)
F(a,B) M(B,C) F(A,B) M(B,C)
6.034 - Spring 03 » 24 (E
Slide 9.1.25 o
We match the Parent subgoal to the rule 4 and generate a Fat her subgoal. Proof Tree 1 GRTTES B (N B RORY P2
. 5. B(%x,%y):- M(x,7y)
, Ans(?g;)
, Ans (?g,)
F(B,C), Ans(A)
<fail>
M(B,C), Ans(a)
F(a,B) M(B,C) F(A,B) M(B,C)
6.034 - Spring 03 » 25 ‘(E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (7 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

1. Fa,B)
2. M(B,C)
Proof Tree 3. GB(?x,72)i- B(?x,7¥) ,P(?¥,72)
1. eeex
5. P(?x,?y):- M(?x,?y)
GP(?g,C)
+ Prove:
GE(?g,C), Ans(?g)
. P(?g,,?y,), P(?y,,C), Ans(?g,)
© F(?g,,%v,), B(?¥,,C), Ans(?g,)
« P(B,C), Ans(A)
. F(B,C), Ans(A)
© <fail>
M(B,C), Ans(A)
P(?g,?y) P(2y,C) Ans (a)
F(?g,?y) M(2g,7y) F(2y,C) M(2y,C)
F(a,8) (B,C) F(a,B) M(B,C)
6.034 - Spring 03 # 26

Slide9.1.26

variables to constants.

¢

Slide9.1.27

We have to apply this unifier to all the pending goals, including the pending Parent subgoal from rule 3.

Thisisthe part that's easy to forget when using this tree representation.

a F(a,B)
2. M(B,C)
Proof Tree : cixca:- poowon piovom
4. P(?x,?y):- F(?x,%y)
5. B(®x,?y):- M(?x,%y)
6P (?g,C)
prove

GF(?g,C), Ans(?g)

P(?g,,%y,) , P(?y,,C), Ans(?g;)
F(?g,,%y,) . P(?Y,,C), Ans(?g,)
P(B,C), Ans(A)

F(B,C), Ans(A)

o

<fail>
. M(B,C), Ans(A)
e (2g,79) »(8,C) © ans(n)
‘@\ \\T
F(?g,7?y) M(?g,?y) F(?y,C) M(?y,C)
F(A,B) M(B,C) F(A,B) M(B,C)

6.034 - Spring 03 » 28

Slide9.1.28

¢

Slide9.1.29

... which proceeds as before to match rule 4 and generate aFat her subgoal, Fat her (B, C) inthis

case.

Which we match to fact 1 and create bindings for the variablesin the goal. In al our previous steps we
also created variable bindings but they were variable to variable bindings. Here, we finally match some

Now, we tackle the second Parent subgoal ...

1. F(a,B)
e M(B,C)
Proof Tree s croéxsca:- eowon ooy
4. P(%x,%y):- F(?x,%y)
o P(?x,?y):- M(?x,?y)
cp(?g,C)
PEdval
GP(?g,C), Ans(?g)
P(?g,,), P(?y,,C), Ans(?g,)
F(?g,,?y,}, P(?y,,C), Ans(?g,)
P(B,C), Ans(A)
F(B,C), Ans(a)
<fail>
M(B,C), Ans(a)
P(?g,?y) P(B,C) . Ans ()
F(?g,?y) M(%g,?y) F(?y,C) M(?y,C)
F(A,B) M(B,C) F(A,B) M(B,C)
6.034 - Spring 03 » 27 (}
Iy F(A,B)
2. M(B,C)
Proof Tree s e oxom:- pexo.eep
4. P(?x,?y):- F(?x,7y)
5. P(%x,?y):- M(?x,?y)
6P (?g,C)
o Pdva:
GP(?g,C), Ans(?g)
© P(?g,,?v:), P(?¥;,C), Ans(?g,)
. F(?g,,?y,), P(?y,,C), Ans(?g,)
¥ P(B,C), Ans(a)
. F(B,C), Ans(A)
. <fail>
M(B,C), Ans(a)
P(?g,?y) P(B,C) Ans (A)
F(?g,7?y) M(?g,?y) F(B,C) M(?y,C)
F(A,B) M(B,C) F(A,B) M(B,C)

6.034 - Spring 03 » 29

¢

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (8 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Lo Slide 9.1.30
Proof Tree 3. @i pin) por,a) But, as we saw before that leads to a failure when we try to match the database.
5. P(?x:?y):> H(?x:?y)
GP(?g,C)
‘@. M E—,
M ?9:,?y:), P(?y,,C), Ans(?g,)
N F(?g,,?y;), P(?¥,,C), Ans(?g,)
C P(B,C), Ans(A)
* F(B,C), Ans(A)
L call>
M(B,C), Ans(A)
P (?g,?y) P(B,C) Ans (A)
F(?g,?y) M(?g,?y) F(8,C) M(?y,C)
F(A,B) M(B,C) F(A,B) M(B,C)
6.034 - Spring 03 » 30 ‘4

Slide9.1.31 % ;
2. .
So, instead, we look at the other alternative, matching the second Parent subgoal to rule 5, and generate a Proof Tree s Al
Mot her (B, C) subgoal. e trascr 5. B(ex,? g
‘ﬁl T
o P(? » P(?y,,C), Ans(?g,)
N F(?g,.?¥,) , P(?y,,C), Ans(?g,)
L P(B,C), Ans(A)
5 F(B,C), Ans(A)
<fail>
M(B,C), Ans(a)
P(?g,7y) B(8,C) Ans (A)
F(?g,?y) M(?g,?y) F(B,C) M(B,C)
F(A,B) M(B,C) F(a,B) M(B,C)
6.034 - Spring 03 » 31 4

5 Slide9.1.32
Proof Tree f ki el This matches the second fact in the database and we succeed with our proof since we have no pending
wirg:ch 5 w(zx,2) subgoals to prove.
- B 13; ;?:; : Roetr) Thisview of the proof process highlights the search connection and is a useful mental model, although it
; B(a.0), ane () istoo awkward for any big problem.
.0, Ane)
%ﬂyl NC)
F(a,B) M(B,C) F(A,B) M(B,C)
6.034 - Spring 03 » 32 (E
Slide9.1.33 . .
At the beginning of this section, we indicated as one of the advantages of alogical representation that we Relations not Functions
could define the relationship between parents and grandparents without having to give an agorithm that 1. Father(A,B); ground fact
. e P . . P N 2. Mother(B,C); ground fact
mlght be SpeCIfI‘C to finding gr‘andparents of grandchildren or vice versa. Thisis still (partly)_true for 3. GrondD(ra, 7o) ‘:’_ Parentiiax, Ty) Barent (y, ?z)
logic programming. We have just seen how we could use the facts and rules shown here to find a 4. Parent(?x,?y) :- Father(?x,?y)
grandparent of someone. Can we go the other way? The answer isyes. 5. Parent(?x,?y):- Mother(?x,?y)
Theinitial goal we have shown here asks for the grandchild of A, which we know is C. Let's see how we | Gronas (A,?£), Ans(?f)

find this answer.

6.034 - Spring 03 » 33 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (9 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide9.1.34
Relations not Functions Once again, we match the GrandP goal to rule 3, but now the variable bindings are different. We have a
1. Father(A,B); ground fact constant binding in the first Parent subgoal rather than in the second.
2. Mother(B,C); ground fact
3. GrandP(?x,?z) :- Parent(?x,?y) ,Parent(?y,?z)
4. Parent(?x,?y) :- Father(?x,?y)
5. Parent(?x,?y) :- Mother (?x,?y)
. Prove:
GrandP(A,?f), Ans(?f)
[3,2x/A,22/2E; 2y=>?y,,?2E=>2%,]
. Parent(A,?y;), Parent(?y,,?f;), Ans(?f,)
6.034 - Spring 03 # 34. ‘4
Slide9.1.35
Once again, we match the Parent subgoal to rule 4 and get anew Fat her subgoa, thistime involving Relations not Functions
A. Weare basically looking for achild of A. 1. Father(A,B); ground fact
2. Mother(B,C); ground fact
3. GrandP(?x,?z):- Parent(?x,?y) ,Parent(?y,?z)
4. Parent(?x,?y):- Father(?x,?y)
5. Parent(?x,?y) :- Mother(?x,?y)
* Prove:
GrandP(A,?f), Ans(?f)
[3,2x/A,22/2£; 2y=>?y,,?£=7£,]
¢+ Parent(A,?y,), Parent(?y,,?f;), Ans(?f))
[4,2x/A,2y/?y,; ?y,=>?y,,?£,=>?£,]
+ Father(A,?y,), Parent(?y,,?f,), Ans(?f,)
6.034 - Spring 03 » 35 ,(E
Slide9.1.36
Relations not Functions Then, we match the first fact, namely Fat her (A, B) , which causes usto bind the ?x variable in the
1. Father(a,B); ground fact second Parent subgoal to B. So, now, we look for achild of B.
2. Mother(B,C); ground fact
3. GrandP(?x,?z) :- Parent(?x,?y) ,Parent(?y,?z)
4. Parent(?x,?y) :- Father(?x,?y)
5. Parent(?x,?y) :- Mother(?x,?y)
Prove:
GrandP(A,?f), Ans(?f)
- [3,2x/A,?22/?£; ?y=>?y,,?f=>?£]
. Parent(A,?y,), Parent(?y,,?f;), Ans(?f,)
~ [4,2x/A,?2y/?y,; ?¥,=?Y,,2E,=?f,]
. Father(A,?y,), Parent(?y,,?f,), Ans(?f,)
- [1,2y,/B; ?2£,=?£,]
+ Parent(B,?f;), Ans(?f,)
6.034 - Spring 03 » 36 (ﬁ
Slide9.1.37
We match the Parent subgoal to rule 4 and generate another Fat her subgoal, which fails. So, we Relations not Functions
backup to find an alternative. 1. Father(A,B); ground fact
2. Mother(B,C); ground fact
3. GrandP(?x,?z):- Parent(?x,?y) ,Parent(?y,?z)
4. Parent(?x,?y):- Father(?x,?y)
5. Parent(?x,?y) :- Mother(?x,?y)
*+ Prove:

GrandP(A,?f), Ans(?f)
- [3,?x/A,?2/?E; 2y=>?y,,?E=3?£,]

. Parent(A,?y,), Parent(?y,,?f;), Ans(?f,)
- [4,2x/A,?y/?y,} ?Y,=>?Y,,?£,=3?£,]

. Father(A,?y,), Parent(?y,,?f,), Ans(?f,)
- [1,?y,/B; ?£,=>7£,]

+ Parent(B,?f;), Ans(?f;)
- [4,?x/B,?y/?£,; ?£;=?£,]

+ Father(B,?f,), Ans(?f,)

¢« <fail>

6.034 - Spring 03 » 37 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (10 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

) . Slide9.1.38
Relations not Functions

. Father(A,B); ground fact

. Mother(B,C); ground fact

. GrandP(?x,?z) :- Parent(?x,?y) ,Parent(?y,?z)

. Parent(?x,?y) :- Father(?x,?y)

. Parent(?x,?y) :- Mother (?x,?y)

oo WwN R

¢ Prove:
GrandP(A,?f), Ans(?f)
[3,?x/A,22/?E; 2y=>?y,,?E=>7£,]
. Parent(A,?y;), Parent(?y,,?f;), Ans(?f,)
[4,?2x/R,?¥/?y,i ?¥,=>?¥,,?£,=?£,]
. Father(A,?y,), Parent(?y,,?f,), Ans(?f,)
1.7yl B 2657,]
. Parent(B,?f;), Ans(?f;)
[4,2x/B,?y/?f,; ?£,=57f,]
. Father(B,?f,), Ans(?f,)
¢ <fail>
~ [5,?x/B,2y/?£,; ?£,27%,]
¢+ Mother(B,?f,), Ans(?f))

som-spingo3e3s

We now match the second Parent subgoal to rule 5 and generate a Mot her (B, ?f) subgoal.

Slide9.1.39
...which succeeds and binds 7 (our query variable) to C, as expected. Relations not Functions
1. Father(A,B); ground fact
. . . . 2. Mother(B,C); ground fact
Note_thgt if we had multiple gran(_jchlldren of Ainthe databgse, we cogld generate them all by 5. GramdD(om %) :- Barent({dx,?y] Darent(?y,7z)
continuing the search at any pending subgoal s that had multiple potential matches. 4. Parent(?x,?y) :- Father(?x,?y)
5. Parent(?x,?y) :- Mother(?x,?y)
The bottom line is that we are representing r elations among the elements of our domain (recall that's A
what alogical predicate denotes) rather than computing functions that specify asingle output for agiven GrandP(A,?£), Ans(?f)
set of inputs. [3,2x/R,22/?£; 2y=>?y, ,2E=?£,]
+ Parent(A,?y,), Parent(?y,,?f;), Ans(?f,)
i . .))) [4,2x/A,2y/?y,; ?y,=>?y,,?£,=>?£,]
Another way of looking at it is that we do not have a pre-conceived notion of which variables represent « Father(a,?y,), Parent(?y,,?f,), Ans(?f,)
"input variables" and which are "output variables". [1,2y,/B; 2£,=?£,]
¢ Parent(B,?f;), Ans(?f,)
[4,2x/B,?y/?£,; ?£,=7£,]
¢ Father(B,?f,), Ans(?f))
. <fail>
- [5,?x/B,?y/?f,; ?£,=7f,]
. Mother(B,?f,), Ans(?f,)
- [2,2£,/¢]
¢ Ans(C) 6.034 - Spring 03 » 39 ,(E
L. Slide9.1.40
Order Revisited We have seen in our examples thus far that we explore the underlying search space in order. This
. Given approach has consequences. For example, consider the following simple rules for defining an ancestor
1. parent(a,B) relation. It says that a parent is an ancestor (this is the base case) and that the ancestor of a parent is an
3. Bmcestoriae Fo) i ancestor (the recursive case). Y ou could use this definition to list a person's ancestors or, as we did for
- ?X,? :- parent(?x,?z) .
4. ancestor(?x,%z) :- parent(?x,?y), ancestor(?y,?z) grandparent, to list a person’s descendants.
. Prove:

ancestor(?x,C), Ans(?x)

. ;ns (A)

6.034 - Spring 03 » 40 (E

Slide9.1.41

Here we've switched the order of rules 3 and 4 and furthermore switched the order of the literalsin the
recursive ancestor rule. The effect of these changes, which have no logical import, is disastrous:
basically it generates an infinite loop.

But what would happen if we changed the order alittle bit?

Order Revisited

Given

1. parent(a,B)

2. parent(B,C)

3. ancestor(?x,?z) :- parent(?x,?z)

4. ancestor(?x,%z) :- parent(?x,?y), ancestor(?y,?z)
+ Prove:

ancestor(?x,C), Ans(?x)

- Ans(A)

How about:

1. parent(A,B)
parent (B,C)

2
3. ancestor(?x,?z) :- ancestor(?y,?z), parent(?x,?y)
4

ancestor(?x,?z) :- parent(?x,?z)
Prove:
ancestor(?x,C), Ans(?x)

<error: stack overflow>

6.034 - Spring 03 » 41

¢

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (11 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide9.1.42
Order Revisited This type of behavior iswhat you would expect from a recursive program if you put the recursive case
. Given before the base case. The key point is that logic programming is half way between traditional
1. parent(a,B) programming and logic and exactly like neither one.
2. arent (B,C)
- :ncestor(?x,?z) :- parent(?x,?z)
4. ancestor(?x,?z) :- parent(?x,?y), ancestor(?y,?z)
i:::::or(?x,c) , Ans(?x)
. ;ns (a)
e How about:
1. parent(a,B)
2. parent(B,C)
3. ancestor(?x,?z) :- ancestor(?y,?z), parent(?x,?y)
4. ancestor(?x,?z) :- parent(?x,?z)
Prove:
ancestor(?x,C), Ans(?x)
. ;error: stack overflow>
e Clauses examined top to bottom and literals left to right.
This is not logic!
6.034 - Spring 03 » 42 ‘4
Slide9.1.43 .
It is often the case that we want to have a condition on arule that says that something is not true. Negation
However, that has two problems, oneisthat the resulting rule would not be Horn. Furthermore, as we oW ARGE i | h
saw earlier, we have no way of concluding a negative literal. In logic programming one typically makes ePca OP ave a rule such as
aclosed world assumption, sometimes jokingly referred to as the "closed mind" assumption, which says *PiA=P, 2 Q .
that we know everything to be known about our domain. And, if we don't know it (or can't proveit), then + = P; VP, vQ - not Horn (two pos literals)
it must be false. We all know people like this... = Cannot have rule that concludes a negation
¢ In logic programming, we assume we have
complete information about the world (closed-world
assumption)
6.034 - Spring 03 » 43 ,4
. Slide9.1.44
Negation Given we assume we know everything relevant, we can simulate negation by failure to prove. Thisis

very dangerous in general situations where you may not know everything (for example, it's not a good

e We cannot have a rule such as thing to me in exams)

. Pl A~ PZ — Q
« - P, VP, v Q - notHorn (two pos literals)
« Cannot have rule that concludes a negation
¢ In logic programming, we assume we have
complete information about the world (closed-world
assumption)
o We use “failure to prove” as negation - a
dangerous assumption.

* Prove: ; in empty KB
not P(?x), Ans(?x)
* Ans(?x) ; success
6.034 - Spring 03 » 44 (E
Slide9.1.45
... but very useful in practice. For example, we can write rules of the form "if there are no other Negation

acceptabl e flights, accept along layover" and we establish this by looking over all the known flights. e . .
cep 9 P 9’8 y 9 g ¢ But often very useful in finite domains, e.g. flights

database, products of a company, etc.

e For example:
Layover not too long(?fl, ?£f2) :-
Arrival_ time(?fl, ?tl),
Departure time(?f2, ?t2),
not Alternative connection(?fl, ?tl, ?£f2, ?t2)
o Will succeed if the Alternative_connection literal
fails.

6.034 - Spring 03 » 45 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (12 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

6.034 Notes: Section 9.2

Slide9.2.1

In this chapter, we take a quick survey of some aspects of natural language understanding. Our goal
will be to capture the meaning of sentences in some detail. This will involve finding representations
for the sentences that can be connected to more general knowledge about the world. Thisisin contrast
to approaches to dealing with language that simply try to match textual patterns, for example, web
search engines.

We will briefly provide an overview of the various levels and stages of natural language processing and
then begin a more in-depth exploration of language syntax.

Slide9.2.2
Applications of NLU

* Interfaces to databases (weather, financial,...)

» Automated customer service (banking, travel,...)
* Voice control of machines (PCs, VCRs, cars,...)
* Grammar and style checking

* Summarization (news, manuals, ...)

» Email routing

* Smarter Web Search

* Translating documents

* Etc.

to-sprngoz-2 o

Slide9.2.3

Language is an enormously complex process, which has been studied in great detail for along time. The
study of language is usualy partitioned into a set of separate sub-disciplines, each with a different focus.
For example, phonetics concerns the rules by which sounds (phonemes) combine to produce words.
Morphology studies the structure of words: how tense, number, etc is captured in the form of the word.
Syntax studies how words are combined to produce sentences. Semantics studies how the meaning of
words are combined with the structure of a sentence to produce a meaning for the sentence, usualy a
meaning independent of context. Pragmatics concerns how context factors into the meaning (e.g. "it's
cold in here") and finally there's the study of how background knowledge is used to actually understand
the meaning the utterances.

We will consider the process of understanding language as one of progressing through various "stages”
or processing that break up along the lines of these various subfields. In practice, the processing may not
be separated as cleanly as that, but the division into stages allows us to focus on one type of problem at a
time.

6.034 Artificial Intelligence

« Natural Language Understanding
+ Getting at the meaning of text and speech
* Not just pattern matching

* Overview

« Syntax

to-sprngoze1 g

The motivation for the study of natural language understanding is twofold. Oneis, of course, that
language understanding is one of the quintessentially human abilities and an understanding of human
language is one of key stepsin the understanding of human intelligence.

In addition to this fundamental long-term scientific goal, there is a pragmatic shorter-term engineering
goal. The potential applications of in-depth natural language understanding by computers are endless.
Many of the applications listed here are already available in some limited forms and there is a great deal
of research aimed at extending these capabilities.

Levels of language analysis

» Phonetics: sounds — words
* Morphology: morphemes — words (jump+ed=jumped)
» Syntax: word sequence — sentence structure

» Semantics: sentence structure + word meaning — sentence
meaning

» Pragmatics: sentence meaning + context — deeper
meaning

* Discourse and World Knowledge: connecting sentences
and background knowledge to utterances.

th-sprngoz-3 o

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (13 of 40)5/11/2007 2:25:59 PM

NLU Architecture

Input/Output data Processing stage Other data used

Frequency spectrogram

Word sequence

Speech Recognition [<+— Sound frequencies

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide9.2.4

If one considers the problem of understanding speech, the first stage of processing is, conceptually, that
of converting the spoken utterance into a string of words. This process is extremely complex and quite
error prone and, today, cannot be solved without a great deal of knowledge about what the words are
likely to be. But, in limited domains, fairly reliable transcription is possible. Even more reliability can be
achieved if we think of this stage as producing a few alternative interpretations of the speech signal, one
of whichisvery likely to be the correct interpretation.

“He gave Mary

toespingo24

Slide9.2.5

The next step is syntax, that is, computing the structure of the sentence, usually in terms of phrases, such
as noun phrases, verb phrases and prepositional phrases. These nested phrases will be the basis of all
subsequent processing. Syntactic analysisis probably the best developed areain computational
linguistics but, nevertheless, there is no universally reliable "grammar of English” that one can use to
parse sentences as well as trained people can. There are, however, a number of wide-coverage grammars
available.

We will seelater that, in general, there will not be a unique syntactic structure that can be derived from a
sequence of words.

Slide9.2.6
NLU Architecture

Input/Output data Processing stage Other data used

Frequency spectrogram

Word sequence

Speech Recognition |<«— Sound frequencies

Syntactic Analysis

“He gave Mary.. [<— Grammar

Sentence sructure

l<+— VWord meanings

Semantics Analysis

He gave Mary .

Partial meaning
x give(x,book mary) A

tip - Spring 02+ 6 4

Slide9.2.7

We will focus in this chapter on syntax and semantics, but clearly thereis agreat deal more work to be
done before a sentence could be understood. One such step, sometimes known as pragmatics, involves
among other things disambiguating the various possible senses of words, possible syntactic structures,
etc. Also, trying to identify the referent of pronouns and descriptive phrases. Ultimately, we have to
connect the meaning of the sentence with general knowledge in order to be able to act on it. Thisis by
far the least developed aspect of the whole enterprise. In practice, this phase tends to be very application
specific.

NLU Architecture

Input/Output data Processing stage Other data used

Frequency spectrogram

Word sequence

Speech Recognition |[<+— Sound frequencies

“He gave Mary..." [<— Grammar

Syntactic Analysis

Sentence sructure

He gaveMary ..

tip - Spring 02+ 5 (E

Given the sentence structure, we can begin trying to attach meaning to the sentence. The first such phase
isknown as semantics. The usua intent here is to translate the syntactic structure into some form of
logical representation of the meaning - but without the benefit of context. For example, who is being
referred to by a pronoun may not be determined at this point.

NLU Architecture

Input/Output data Processing stage Other data used

Frequency spectrogram
Wl ||
i

Word sequence

Speech Recognition |[<«— Sound frequencies

Syntactic Analysis

“He gave Mary..." [<+— Grammar

Sentence sructure

[<+— Word meanings

Semantics Analysis

He gave Mary

Partial meaning
3x give(x, book mary) A

[<+— Context of utterance

Sentence meaning
give(john1,book2,Mary1) A
tip - Spring 02+ 7 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (14 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Syntax
» Grammar captures legal structures in the language
+ Parsing involves finding the legal structure(s) for a
sentence
» The result is a parse tree
S
NP VP
N VP PP
John v NP P NP
gave Art N to N
the book Mary 'spineoz-s of
Slide9.2.9

A grammar istypically written as a set of rewrite rules such as the ones shown here in blue. Bold-face
symbols, such as S, NP and VP, are known as non-terminal symbols, in that they can be further re-
written. The non-bold-face symbols, such as John, the and boy, are the words of the language - also

known as the terminal symbols.

Grammars

» We can think of grammars as a set of rules for rewriting
strings of symbols:
*S>NPVP
* NP —» Name
* NP — ArtN
* Name — John
« Art — the
*« N — boy

* The string S can be rewritten as NP followed by VP

tip - Spring 02 - 10

4

Slide9.2.11

The symbol NP, can be rewritten either as a Name or as an Art(icle), such asthe, followed by aN(oun),

such as boy.

Slide9.2.8

In the rest of this section, we will focus on syntax. The description of the legal structuresin alanguageis
called agrammar. We'll see examples of these later. Given a sentence, we use the grammar to find the
legal structures for a sentence. This processis called par sing the sentence. The result is one or more
par se trees, such as the one shown here, which indicates that the sentence can be broken down into two
constituents, anoun phrase and a verb phrase. The verb phrase, in turn, is composed of another verb
phrase followed by a prepositional phrase, etc.

Our attempt to understand sentences will be based on assigning meaning to the individua constituents
and then combining them to construct the meaning of the sentence. So, in this sense, the constituent
phrases are the atoms of meaning.

Grammars

« We can think of grammars as a set of rules for rewriting
strings of symbols:
+S—>NPVP
* NP - Name
* NP — ArtN
* Name — John
o Art — the
* N — boy

tip - Spring 02+ 9 ,(E

Slide9.2.10

Thefirst rule, S-> NP VP, indicates that the symbol S (standing for sentence) can be rewritten as NP
(standing for noun phrase) followed by VP (standing for verb phrase).

Grammars

« We can think of grammars as a set of rules for rewriting
strings of symbols:
+S>NPVP
* NP —» Name
* NP ArtN
* Name — John
= Art — the
* N — boy
« The string S can be rewritten as NP followed by VP

* The string NP can be rewritten either as Name (which can
be rewritten as John) or as an Art (such as the) followed by
an N (such as boy).

Up - Spring 02+ 11 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (15 of 40)5/11/2007 2:25:59 PM

Grammars

* We can think of grammars as a set of rules for rewriting
strings of symbols:
+S—>NPVP
NP — Name
NP — Art N
Name — John
Art — the
* N — boy

* The string S can be rewritten as NP followed by VP

* The string NP can be rewritten either as Name (which can
be rewritten as John) or as an Art (such as the) followed by
an N (such as boy).

» A sentence is legal if we can find a sequence of rewrite
rules that, starting from the symbol S, generate the
sentence. This is called parsing the sentence.

torspngo2:12 g

Slide9.2.13

Note that the successful sequence of rules applied to achieve the rewriting give us the parse tree. Note

that this excludes any "wrong turns' we might have taken during the search.

Good Grammars

« Differentiates between “correct” and “incorrect” sentences
* The boy hit the ball
+ The hit boy the ball (*)

correct
incorrect

tip - Spring 02 - 14 4

Slide9.2.15

The other principal criterion isthat it assigns "meaningful” structures to sentences. In our case, this
literally means that it should be possible to assign meaning to the sub-structures. For example, anoun
phrase will denote an object while a verb phrase will denote an event or an action, etc.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide9.2.12

If we can find a sequence of rewrite rules that will rewrite theinitia Sinto theinput sentence, the we
have successfully parsed the sentence and it is legal.

Note that thisis a search process like the ones we have studied before. We have an initial state, S, at any
point in time, we have to decide which grammar rule to apply (there will generally be multiple choices)
and the result of the application is some sequence of symbols and words. We end the search when the
words in the sentence have been obtained or when we have no more rulesto try.

Grammars

« We can think of grammars as a set of rules for rewriting
strings of symbols:
+S—>NPVP
* NP - Name
* NP — ArtN
* Name — John
o Art — the
* N — boy

« The string S can be rewritten as NP followed by VP

« The string NP can be rewritten either as Name (which can
be rewritten as John) or as an Art (such as the) followed by
an N (such as boy).

« A sentence is legal if we can find a sequence of rewrite
rules that, starting from the symbol S, generate the
sentence. This is called parsing the sentence.

« The sequence of rules applied also give us the parse tree.

tp - Spring 02 - 13 (E

Slide9.2.14
What makes a good grammar?

The primary criterion is that it differentiates correct sentences from incorrect ones. (By convention an
asterisk next to a sentence indicates that it is not grammatical).

Good Grammars

« Differentiates between “correct” and “incorrect” sentences
* The boy hit the ball
+ The hit boy the ball (*)
» Assigns meaningful structure to the sentences
* (The boy) (hit the ball)
* (The) (boy hit) (the ball)

Up - Spring 02 - 15 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (16 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide9.2.16
Good Grammars
Among the grammars that meet our principal criteriawe prefer grammars that are compact, that is, have
fewer rules and are modular, that is, define structures that can be re-used in different contexts - such as
noun-phrase in this example. Thisis partly for efficiency reasonsin parsing, but is partly because of
Occam's Razor - the simplest interpretation is best.

« Differentiates between “correct” and “incorrect” sentences
« The boy hit the ball
« The hit boy the ball (*)
» Assigns meaningful structure to the sentences
* (The boy) (hit the ball)
* (The) (boy hit) (the ball)
» Compact and modular, e.g. all these NPs can be used in
any context NPs are allowed:

— NP — Name John

— NP ArtN the boy

— NP Art Adj N the tall girl

— NP - Art N that VP the dog that barked

to-spngo2: 15 g

Slide9.2.17
Types of Grammars
There are many possible types of grammars. The three types that are most common in computational
linguistics are regular grammars, context-free grammars and context-sensitive grammars. These
grammars can be arranged in a hierarchy (the Chomsky hierarchy) according to their generality. In this
hierarchy, the grammarsin higher levels fully contain those below and there are languages in the more

general grammars not expressible in the less general grammars. » Regular grammars — Rules are of the form:
—A—>xorA—xB

» There’s a hierarchy of grammar types that can be classified
by their generality. Some common types in wide use (from
less general to more general):

The least general grammar of some interest in computational linguistics are theregular grammars.
These grammars are composed of rewrite rules of the form A ->x or A ->x B. That is, a non-terminal
symbol can be rewritten as a string of terminal symbols or by a string of terminal symbols followed by a
non-terminal symbol.

A, B are single non-terminal
symbols

x is a string of terminal symbols

«, 8, v are strings of terminal & non-
terminal symbols.

tp - Spring 02+ 17 (E

Slide9.2.18
Types of Grammars
, . o At the next level are the context-free grammars. In these grammars, a non-terminal symbol can be
* There’s a hierarchy of grammar types that can be classified rewritten into any combination of terminal and non-terminal symbols. Note that since the non-terminal
by their generality. Some common types in wide use (from appears alonein the left-hand side (Ihs) of therule, it is re-written independent of the context in which it
less general to more general): appears - and thus the name.
* Regular grammars — Rules are of the form:
—-A—-xorA—xB
e Context Free grammars — Rules are of the form:
-A->y

A, B are single non-terminal
symbols

X is a string of terminal symbols

«, 8, v are strings of terminal & non-
terminal symbols.

tip - Spring 02 - 18 4

Slide9.2.19
Types of Grammars

Finally, in context-sensitive grammars, we are allowed to specify a context for the rewriting operation. , . .
« There’s a hierarchy of grammar types that can be classified

by their generality. Some common types in wide use (from
less general to more general):
* Regular grammars — Rules are of the form:
-A—-xorA—xB
» Context Free grammars — Rules are of the form:
—-A->y
« Context Sensitive grammars — Rules are of the form:
- aAB—>sayp

There are even more general grammars (known as Type 0) which we will not deal with at all.

A, B are single non-terminal
symbols

X is a string of terminal symbols

«, 8, y are strings of terminal & non-
terminal symbols.

Up - Spring 02 - 19 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (17 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide 9.2.20
Types of Grammars

» Regular grammars cannot capture some of the nested
structures of natural language. The language a"b" is not a
regular language and there are legal sentences with that
type of structure.

th-sprngez-20

Slide9.2.21

There have been several empirical proofs that there exist natural languages that have non-context-free
structure.

Slide9.2.22
Types of Grammars

» Regular grammars cannot capture some of the nested
structures of natural language. The language ab" is not a
regular language and there are legal sentences with that
type of structure.

» Some constructions in some natural languages have also
been shown not to be context free.

* But, much of the structure of natural languages can be
captured in a context free language and we will restrict
ourselves to context free grammars.

tip - Spring 02 - 22 (E

Slide9.2.23

Here's an example of a context free grammar for a small subset of English. Note that the vertical band is
ashort hand which can be read as"or"; it is a notation for combining multiple rules with identical left
hand sides. Many variations on this grammar are possible but thisillustrates the style of grammar that we
will be considering.

The language of parenthesized expressions, that is, n left parens followed by n right parensisthe classic
example of anon-regular language that requires us to move to context-free grammars. There are legal
sentences in natural languages whose structure is isomorphic to that of parenthesized expressions (the cat
likes tuna; the cat the dog chased likes tuna; the cat the dog the rat bit chased likes tuna). Therefore, we
need at least a context-free grammar to capture the structure of natural languages.

Types of Grammars

» Regular grammars cannot capture some of the nested
structures of natural language. The language a"b" is not a
regular language and there are legal sentences with that

type of structure.

« Some constructions in some natural languages have also
been shown not to be context free.

ways. We will limit ourselves to this class.

tlp - Spring 02 - 21 (E
However, much of natural language can be expressed in context-free grammars extended in various
A Simple Context-Free Grammar
+ S—>NPVP « Article - the | a | an | this | that ...
« S — S Conjunction S « Preposition —to|in|on|near ...
« NP — Pronoun « Conjunction — and | or | but ...
« NP — Name « Pronoun — | | you | he | me | him ...
* NP — Article Noun + Noun — book | flight | meal ...
* NP — Number « Name — John | Mary | Boston ...
* NP — NP PP « Verb - book | include | prefer ...
+« NP — NP RelClause « Adjective s first | earliest | cheap ...
« VP — Verb
« VP — Verb NP
« VP — Verb Adj
< VP > VP PP
« PP — Prep NP
« RelClause — that VP
tip - Spring 02 - 23 ‘4

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (18 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Grammar Rules

* We can use our rule language to write grammar rules (we’ve seen this
before).
» Assume words in sentence is represented as a set of facts:
« (John 0 1)
* (ran12)

* Then a rule would be represented:
*+ S—NPVP
o ((S ?sl ?s3) :— (NP ?sl ?s2) (VP ?s2 ?s3))
» With, for example, ?s1=0, ?s2=1 and ?s3=2, r1 would match the
sentence “John ran”

tip - Spring 02+ 24.

¢

Slide9.2.25

In the rest of this Chapter, we will write the rulesin a simpler shorthand that leaves out the word indices.
However, we will understand that we can readily convert that notation into the rules that our rule-

interpreters can deal with.

Grammar Rules

* We can use our rule language to write grammar rules (we’ve seen this
before).
« Assume words in sentence is represented as a set of facts:
« (John 0 1)
* (ran12)
» Then a rule would be represented:
+ S—NPVP
« ((S ?sl ?s3) :— (NP ?sl ?s2) (VP ?s2 ?s3))
« With, for example, 7s1=0, ?s2=1 and ?s3=3, r1 would match the
sentence “John ran”
* We will write these grammar rules in the following shorthand:
* ((S) - (NP) (VP)
which would just generate the rule above.
* Rules indicating the category for particular words will be written:
« ((NP) :- John)

tip - Spring 02 - 26

4

Slide 9.2.27

We can make a small modification to the generated rule to keep track of the parse tree asthe rules are
being applied. The basic ideais to introduce a new argument into each of the facts which keeps track of
the parse tree rooted at that component. So, the parse tree for the sentence is simply alist, starting with
the symbol S, and whose other components are the trees rooted at the NP and VP constituents.

Slide9.2.24

At this point, we should point out that there is a strong connection between these grammar rules that we
have been discussing and the logic programming rules that we have already studied. In particular, we can
write context-free grammar rulesin our simple Prolog-like rule language.

We will assume that a set of facts are available that indicate where the particular words in a sentence
start and end (as shown here). Then, we can write arule such as S-> NP VP asasimilar Prolog-like rule,
where each non-terminal is represented by afact that indicates the type of the constituent and the start
and end indices of the words.

Grammar Rules

« We can use our rule language to write grammar rules (we've seen this
before).
« Assume words in sentence is represented as a set of facts:
+ (John0 1)
e (ran12)
« Then a rule would be represented:
* S—NPVP
e ((S ?sl ?s3) :— (NP ?sl ?s2) (VP ?s2 ?s3))
« With, for example, ?s1=0, ?s2=1 and ?s3=2, r1 would match the
sentence “John ran”
« We will write these grammar rules in the following shorthand:
* ((S) - (NP) (VP))
which would just generate the rule above.

tlp - Spring 02 - 25 ,(E

Slide9.2.26

We can also use the same syntax to specify the word category of individual words and also turn these
into rules.

Parsing

« We can construct a parse tree by modifying the generated
rules slightly:
¢ ((S (s ?np ?vp) ?sl ?s3)) :-
(NP ?np ?sl 2s2) (VP 2vp ?s2 ?s3))
« This rule now shows how to build the parse tree for the whole
sentence (s ?np ?vp) from the parse trees for the constituent NP
tree (bound to ?np) and VP tree (bound to ?vp).

Up - Spring 02 - 27 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (19 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide9.2.28
Parsing
. This additional bit of bookkeeping can also be generated automatically from the shorthand notation for
» We can construct a parse tree by modifying the generated therule.

rules slightly:

¢ ((5 (s ?np ?vp) ?sl 2s83)) :-

(NP ?np ?sl ?s2) (VP 2vp ?s2 2?s3))

« This rule now shows how to build the parse tree for the whole
sentence (s ?np ?vp) from the parse trees for the constituent NP
tree (bound to ?np) and VP tree (bound to ?vp).

* This can all be generated automatically from the same
shorthand notation:

* ((8):- (NP) (VP))

torspingo2:28

Slide9.2.29 :
Parsing
Note that given the logic rules from the grammar and the facts encoding a sentence, we can use chaining

(either forward or backward) to parse the sentence. Let's look at thisin more detail. * We can construct a parse tree by modifying the generated

rules slightly:
* ((S (s ?np ?vp) ?sl ?s3)) :-
(NP ?np ?sl ?s2) (VP ?vp ?s2 ?s3))

« This rule now shows how to build the parse tree for the whole
sentence (s 7np ?vp) from the parse trees for the constituent NP
tree (bound to ?np) and VP tree (bound to ?vp).

« This can all be generated automatically from the same
shorthand notation:

* ((8) - (NP) (VP))

* Given a set of rules (and word facts), we can use forward
or backward chaining to parse a sentence.

tp - Spring 02 - 29 (E

Slide9.2.30
Top-Down vs Bottom-Up
A word on terminology. Parsers are often classified into top-down and bottom-up depending whether

* Simple parsers are often classified as top-down or bottom- they work from the top of the parse tree down towards the words or vice-versa. Therefore, backward-
up where top and bottom refer to the parse tree. chaining on the rules leads to atop-down parser, while forward-chaining, which we will see later, leads

+ Backwards chaining on the grammar rules we have seen is to a bottom-up parser. There are more sophisticated parsers that are neither purely top-down nor bottom-
a top-down approach to parsing (starts with S and works up, but we will not pursue them here.

towards the words).

» Forward chaining on the grammar rules is a bottom up
approach (starts with the words and works towards S).

tip - Spring 02 - 30 (E

Slide9.2.31 Top Down Parsing

. . John gave the book to Mary
Let uslook at how the sample grammar can be used in a top-down manner (backward-chaining) to parse o = HiBIE

the sentence "John gave the book to Mary". We start backchaining with the goal §0,6]. The first relevant . munc“on s

ruleisthefirst one and so we generate two subgoals: NP[0,7] and VP[?,6]. . NP _ Pronoun S[0,6]

* NE -5 Name NP[0,?] VP[2,6]
« NP - Article Noun

« NP — Number

« NP > NP PP

* NP — NP RelClause

« VP - Verb

+ VP> Verb NP

+ VP - Verb Adj

« VP> VPPP

« PP — Prep NP

« RelClause - that VP

Up - Spring 02+ 31 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (20 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Top Down Parsing Slide9.2.32

John gave the book to Mal
g v Assuming we examine the rulesin order, we first attempt to apply the NP -> Pronoun rule. But that will

* S > NPYP fail when we actually try to find a pronoun at location O.

+ S - S Conjunction S
« NP - Pronoun

+ NP Name NP[0,?] VP[2,6]
« NP — Article Noun |

« NP —> Number

S[0,6]

« NP NP PP Pronoun[0,?]
« NP — NP RelClause
« VP - Verb John[0,1]

« VP - Verb NP

« VP - Verb Adj

*« VP > VPPP

« PP - Prep NP

+ RelClause - that VP

torspimgo2:32 g

Slide 9.2.33 Top Down Parsing

. . . ! . . John gave the book to Mary
Then we try to seeif NP -> Name will work, which it does, since the first word is John and we have the

rule that tells us that John is a Name. Note that thiswill also bind the end of the VP phrase and the start
of the VP to be at position 1.

« S NPVP

+ S - S Conjunction S
« NP — Pronoun

* NP > Name

« NP — Article Noun

« NP — Number

« NP> NP PP Name[0,1]
« NP — NP RelClause
* VP - Verb

« VP - Verb NP

« VP - Verb Adj

*« VP > VPPP

« PP — Prep NP

* RelClause - that VP

S[0,6]

NP[0,1] VP[1,6]

John([0,1]

tp - Spring 02 - 33 (E

Top Down Parsing Slide9.2.34

John gave the book to Ma
g v So, we move on to the pending VP. Our first relevant ruleis VP -> Verb, which will fail. Note, however,

that there is a verb starting at location 1, but at this point we are looking for a verb phrase from positions
S[0,6] 1to 6, while the verb only goes from 1 to 2.

« S>NPVP

+ S - S Conjunction S
« NP — Pronoun

« NP -> Name

« NP — Article Noun

« NP — Number

« NP NP PP Name(0,1]
+ NP — NP RelClause | ><
« VP Verb

« VP - Verb NP

« VP — Verb Adj

*« VP> VPPP

« PP > Prep NP

« RelClause - that VP

NP[0,1] VP[1,6]

Verb[1,6]

John[0,1] gave[1,2] ..

tip - Spring 02 - 34 4

Slide9.2.35 Top Down Parsing

. . . John gave the book to Mary
So, we try the next VP rule, which will look for averb followed by a noun phrase, spanning from words

1to 6. The Verb succeeds when we find "gave" in the input. * B NPVP

+ S - S Conjunction S
« NP — Pronoun

* NP - Name NP[0,1] VP[1,6]
« NP - Article Noun

« NP — Number

S[0,6]

+ TP s KPP Name(0,1] Verb[1,2] NP[2,6]
« NP — NP RelClause
* VP Verb John[0,1] gave[1,2]

* VP Verb NP

« VP - Verb Adj

*« VP VP PP

« PP - Prep NP

« RelClause - that VP

Up - Spring 02 - 35 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (21 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Top Down Parsing
John gave the book to Mary

S > NP VP

S - S Conjunction S
NP — Pronoun

NP — Name

NP - Article Noun
NP —> Number

NP - NP PP

NP — NP RelClause
VP - Verb

VP - Verb NP

VP - Verb Adj

VP - VP PP

PP — Prep NP
RelClause — that VP

S[0,6]

NP[0,1]
Name[0,1] Verb[1,2]

John[0,1] gave[1,2]

VP[1,6]

NP[2,6]

Pronoun[2,6]

the[2,3]

t-spingo2:35 g

Slide9.2.37

Then we try the name rule, which also fails.

Top Down Parsing
John gave the book to Mary

S > NP VP

S —» S Conjunction S
NP — Pronoun

NP > Name

NP - Article Noun
NP — Number

NP > NP PP Name(0,1]
NP — NP RelClause |
VP -» Verb

VP - Verb NP

VP — Verb Adj

VP - VP PP

PP — Prep NP
RelClause > that VP

S[0,6]

NP[0,1]

Verb[1,2]

John[0,1] gave[1,2]

VP[1,6]

Art[2,?]

the[2,3]

NP[2,6]

N[?,6]

book(3,4]

tip - Spring 02 - 38 4

Slide9.2.39

The article succeeds when we find "the" in the input. Now we try to find a noun spanning words 3 to 6.

We have anoun in the input but it only spans one word, so we fail.

Slide 9.2.36

Now we try to find an NP starting at position 2. First we try the pronoun rule, which fails.

Top Down Parsing
John gave the book to Mary

S > NP VP

S - S Conjunction S
NP — Pronoun

NP > Name

NP — Article Noun
NP — Number

NP — NP PP

NP — NP RelClause
VP - Verb

VP — Verb NP

VP — Verb Adj

VP - VP PP

PP - Prep NP
RelClause - that VP

S[0,6]

NP[0,1]
Name[0,1] Verb[1,2]

John[0,1] gave[1,2]

VP[1,6]

NP[2,6]

Name[2,6]

X

the[2,3]

tp - Spring 02 - 37

4

Slide9.2.38

Then wetry the article followed by anoun.

Top Down Parsing
John gave the book to Mary

S > NP VP

S - S Conjunction 8
NP — Pronoun

NP —> Name

NP — Article Noun
NP — Number

NP — NP PP

NP — NP RelClause
VP - Verb

VP - Verb NP

VP - Verb Adj

VP - VP PP

PP — Prep NP
RelClause - that VP

S[0,6]

NP[0,1]
Name[0,1] Verb[1,2]

John[0,1] gave[1,2]

VP[1,6]

Art[2,3]

the[2,3]

NP[2,6]

Up - Spring 02 - 39

N[3,6]

book(3,4]

4

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (22 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Top Down Parsing Slide 9.2.40

John gave the book to Mal
g v We eventually fail back to our choice of the VP rule and so we try the next VP rule candidate, involving

aVerb followed by an adjective, which also fails.

S 5> NP VP

S - S Conjunction S
NP — Pronoun

NE -5 Name NP[0,1] VP[1,6]

NP - Article Noun

NP —> Number

NP _ NP PP Name[0,1] Verb[1,2] Adj[2,6]
NP — NP RelClause
VP - Verb

VP - Verb NP

VP - Verb Adj

VP - VP PP

PP — Prep NP
RelClause — that VP

S[0,6]

John[0,1] gave[1,2] the[2,3]

to-spmgo2-40 g

Slide9.2.41 Top Down Parsing

. John gave the book to Mary
The next VP rule, looks for a VP followed by prepositional phrase.

S > NP VP

+ S - S Conjunction S
NP — Pronoun

NP -> Name

NP — Article Noun
NP — Number

NP _> NP PP Name[0,1] VP[1,?] PP[?,6]
NP — NP RelClause
VP - Verb

VP — Verb NP

VP — Verb Adj

VP - VP PP

PP — Prep NP
RelClause - that VP

S[0,6]

NP[0,1] VP[1,6]

John([0,1]

tp - Spring 02 + 41 (E

Top Down Parsing Slide9.2.42

John gave the book to Ma
g v The first VP succeeds by finding the verb "gave", which now requires usto find a prepositional phrase

starting at position 2.

S > NP VP

S —» S Conjunction S
NP — Pronoun

NP > Name

NP — Article Noun
NP — Number

NP > NP PP Name[0,1] VP[1,2] PP[2,6]
NP — NP RelClause |

VP -, Verb

VP - Verb NP
VP - Verb Adj
VP - VP PP gave[1,2]
PP — Prep NP

RelClause -» that VP

S[0,6]

NP[0,1] VP[1,6]

John[0,1] Verb[1,2]

tip - Spring 02 - 42 4

Slide9.2.43 Top Down Parsing

. ;. L. . John gave the book to Mary
We proceed to try to find a preposition at position 2 and fail.

S > NP VP

S - S Conjunction 8
NP — Pronoun

NF = Name NP[0,1] VP[1,6]

NP — Article Noun

NP — Number

NP > NP PP Name[0,1] VP[1,2] PP[2,6]
NP — NP RelClause
VP - Verb

VP - Verb NP

VP - Verb Adj

VP - VP PP gave[1,2] the[2,3]
PP - Prep NP

RelClause - that VP

S[0,6]

John[0,1] Verb[1,2] P[2,?] NP[?,6]

Up - Spring 02 - 43 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (23 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Top Down Parsing Slide9.2.44

Joh the book to M
onn gave fhe beoicfo Many Wefail back to trying an alternative rule (verb followed by NP) for the embedded VP, which now

* S > NPYP successfully parses "gave the book" and we proceed to look for a prepositiona phrase in the range 4 to 6.

+ S - S Conjunction S
« NP - Pronoun

+ NP Name NP[0,1] VP[1,6]

+ NP - Article Noun

« NP —> Number

« NP NP PP Name[0,1] VP[1,4] PP[4,6]
« NP - NP RelClause

+ VP Verb John0,1] Verb[1,2] NP[2,4]

« VP - Verb NP

« VP - Verb Adj

« VP > VPPP gave[1,2] Art[2,3] N[3,4]

« PP - Prep NP

+ RelClause - that VP

S[0,6]

the[2,3] book[3,4]

th-sprngaz-#+

Slide9.2.45 Top Down Parsing

John gave the book to Mary

Which successfully parses, "to Mary", and the complete parse succeeds. . SLNPVP

+ S - S Conjunction S
« NP — Pronoun

| NP flame NP[O,1] VPL1.6]

« NP - Article Noun |

« NP — Number

« NP> NP PP Name[0,1] VP[1,4] PP[4,6]
« NP — NP RelClause
* VP - Verb

« VP - Verb NP

« VP - Verb Adj

« VP > VPPP gave[1,2] Art[2,3] N[3,4] to[4,5] Name[5,6]
« PP - Prep NP

* RelClause - that VP

S[0,6]

John[0,1] Verb[1,2] NP[2,4] P[4,5] NP[5,6]

the[2,3] book[3,4] Mary[5,6]

tp - Spring 02 - 45 (E

. . Slide 9.2.46
Problems with Top Down Parsing
There are anumber of problems with this top-down parsing strategy. One that substantially impacts

* Generates sub-trees without check-ing th.e input efficiency isthat rules are chosen without checking whether the next word in the input can possibly be
* NP — Pronoun is tested when input is John, etc. compatible with that rule. There are simple extensions to the top-down strategy to overcome this

* Left-recursive rules lead to infinite loops difficulty (by keeping atable of constituent types and the lexical categories that can begin them).
* NP - NP PP

A more substantial problem, isthat rules such as NP -> NP PP (left-branching rules) will cause an
infinite loop for this simple top-down parsing strategy. It is possible to modify the grammar to turn such
rules into right-branching rules - but that may not be the natural interpretation.

* When looking for an NP where there isn’t one, this rule
will loop forever, generating new NP sub-goals.

« Grammar needs to be rewritten to avoid these rules.

* Repeated parsing of sub-trees (after failure and backup) Note that the top-down strategy is carrying out a search for a correct parse and it ends up doing wasted
« In our simple example, VP — Verb — gave is parsed 3 work, repeatedly parsing parts of the sentence during its attempts. This can be avoided by building a
times. table of parses that have been previously discovered (stored in the fact database) so they can be reused

- If we store intermediate results in fact database, can rather than re-discovered.

save some of this work.

tip - Spring 02 - 46 (E

Slide 9.2.47
Forward Chaining
So far we have been using our rules together with our backchaining algorithm for logic programming to

do top-down parsing. But, that's not the only way we can use the rules. « |dentify those rules whose antecedents (rhs) can be unified

with the ground facts in the database.

An dternative strategy starts by identifying any rules for which all the literalsin their right hand side can « These rules are said to be triggered.

be unified (with asingle unifier) to the known facts. These rules are said to be trigger ed. For each of Don't trigger rules that would not add new facts to the

those triggered rules, we can add a new fact for the left hand side (with the appropriate variable database. This avoids trivial infinite loops.

substitution). Then, we repeat the process. Thisis known as forward chaining and corresponds to - For each triggered rule, apply the substitution to the

bottom-up parsing, as we will see next. consequent (lhs) of the rule and add the resulting literal to
database.

* Repeat until no rule is triggered.

flp - Spring 02 - 47 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (24 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide9.2.48
Bottom Up Parsing
Now, let'slook at bottom-up parsing. We start with the facts indicating the positions of the wordsin the

L S NEYP input, shown here graphically.

+ S S Conjunction S
« NP - Pronoun

+« NP - Name

« NP - Article Noun

« NP - Number

+« NP NP PP

« NP - NP RelClause
*« VP Verb

* VP Verb NP

* VP - Verb Adj

« VP> VPPP
« PP - Prep NP John gave the book to Mary
2 3 4 5 6
* RelClause - that VP
tlp - Spring 02 - 48 ‘4

Slide 9.2.49
Bottom Up Parsing
Note that al the rulesindicating the lexical categories of the individual words, such as Name, Verb, etc,
all trigger and can al be run to add the new facts shown here. Note that book is ambiguous, both a noun
and averb, and both facts are added.

1. S>NPVP

+« S S Conjunction S
« NP - Pronoun

« NP - Name

« NP - Article Noun

« NP — Number

« NP NPPP

« NP - NP RelClause

*« VP Verb

¢ VP Verb NP

« VP - Verb Adj Name Verb Art N V Prep Name

« VP VPPP \/ |

. John gave the bdok to Mary
PP — Prep NP 1 5 3 4 5 6

« RelClause - that VP

tlp - Spring 02 - 49 4

Slide 9.2.50
Bottom Up Parsing

1 S_NPVP Now these three rules (NP -> Name, VP-> Verb and NP -> Art N) all trigger and can be run.

+« S S Conjunction S
+« NP - Pronoun

« NP _. Name

« NP Article Noun

« NP - Number

« NP NPPP

« NP - NP RelClause

« VP Verb NP VP NP NP

+ VP, Verb NP

« VP Verb Adj Name Verb Art N V Prep Name
« VP VPPP \/ |

« PP _ Prep NP John , gave) the 2 bdok 4 to 5 Marys

« RelClause - that VP

tip - Spring 02 - 50 (E

Slide9.2.51
Bottom Up Parsing
Then, another threerules (S-> NP VP, VP -> Verb NP and PP -> Prep NP) trigger and can be run. Note

that we now have an Sfact, but it does not span the whole input. Iz S=sNPVE

+ S S Conjunction S

« NP - Pronoun

« NP - Name

« NP Article Noun

« NP - Number s VP PP
« NP NPPP

« NP - NP RelClause
*« VP Verb

* VP Verb NP

« VP Verb Adj Name Verb Art N V rep Name
- VP VPPP \/ |

« PP, Prep NP 0John y gave 5 the s bdok 4 to 5 Man/6
« RelClause - that VP

NP VP NP NP

Up - Spring 02 - 51 Q

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (25 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Bottom Up Parsing

1. S-NPVP

+ S, S Conjunction S
NP — Pronoun
NP -» Name s
NP — Article Noun
NP — Number
NP -, NP PP
NP — NP RelClause
VP - Verb
VP - Verb NP
VP - Verb Adj
VP -, VP PP
PP — Prep NP
RelClause - that VP

VP
VP
NP VP NP

Name Verb At N V rep

Jolhn ge!ve tr|1e \bék tc|:
0 1 2 3 4

Name

tip - Spring 02 - 52

Mary
5 6

Slide 9.2.52

¢

Slide9.2.53

Finally, we run the S rule covering the whole input and we can stop.

Bottom Up Parsing

1. S5 NPVP

+« S - S Conjunction S S
NP — Pronoun
NP — Name
NP _ Article Noun
NP - Number
NP — NP PP
NP — NP RelClause
VP - Verb
VP - Verb NP
VP - Verb Adj
VP - VP PP
PP _ Prep NP
RelClause — that VP

Unused
facts in
red.

PP

Verb

Jolhn galve tf|1e \bék tclx
0 1 2 3

Name Art N V rep Name

tp - Spring 02 - 54

Mary
5 6

Slide9.2.54

4

Slide 9.2.55

Bottom-up parsing, like top-down parsing, generates wasted work in that it generates structures that
cannot be extended to the final sentence structure. Note, however, that bottom-up parsing has no
difficulty with left-branching rules, as top-down parsing did. Of course, rules with an empty right hand
side can aways be used, but thisis not a fundamental problem if we require that triggering requires that
arule adds a new fact. In fact, by adding all the intermediate facts to the data base, we avoid some of the

potential wasted work of a pure search-based bottom-up parser.

Now, we trigger and run the S rule again as well asthe VP->VP PP rule.

1:

Bottom Up Parsing

S - NP VP

S - S Conjunction S s
NP - Pronoun

NP > Name s
NP Article Noun
NP — Number

NP -, NP PP

NP — NP RelClause
VP - Verb

VP > Verb NP

VP - Verb Adj

VP -, VP PP

PP — Prep NP
RelClause - that VP

VP

VP

NP VP NP

Name Verb At N V rep

Jc!hn ge!ve ﬂ|1e Mk tclx
o] 1 2 3 4

Name

tp - Spring 02 - 53

Mary
5 6

¢

Note that (not surprisingly) we generated some facts that did not make it into our final structure.

Bottom Up Parsing

« Generates sub-trees that cannot be extended to S, for
example, the interpretation of book as a verb in our
example.

* No problem with left recursion, but potential problems with
empty right hand side (empty antecedent).

« Saving all the facts makes this more efficient than a pure
search-based bottom-up parser — does not have to redo
sub-trees on failure.

Up - Spring 02 - 55

4

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (26 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Ambiguity

* A major problem in context-free parsing is ambiguity.
+ Lexical class ambiguity: book is Noun and Verb

» Attachment ambiguity:

*« S5 NPVP

* NP NP PP
VP > VP PP
VP - Verb NP
Mary (((saw (John)) (on the hill)) (with a telescope))
Mary ((saw (John)) (on the (hill with a telescope)))
Mary ((saw (John (on the hill))) (with a telescope))
Mary (saw ((John (on the hill)) (with a telescope)))
Mary (saw (John (on the (hill with a telescope))))
» Generate all parses and discard semantically inconsistent

ones

* Preferences during parsing

tip - Spring 02 - 56

4

Slide9.2.57

Here are the various interpretations of our ambiguous sentence. In this one, both prepositional phrases
are modifying the verb phrase. Thus, Mary is on the hill she used a telescope to see John.

Ambiguity

Mary ((saw (John)) (on the (hill (with a telescope))))

Mary is on the hill that
has a telescope and
she saw John

S S S S S

VP VP VP
WV VP VP NP NP
VP NP P
/\ //i P
NP Verb NP P PP
b N/\P/}P

tp - Spring 02 - 58

4

Slide9.2.59

In this one, the hill phrase is attached to John; thisis clearer if you replace John with "the fool", so now
Mary saw "the fool on the hill". She used a telescope for this, since that phrase is attached to the VP.

Slide 9.2.56

One of the key facts of natural language grammars is the presence of ambiguity of many types. We have
already seen one simple example of lexical ambiguity, the fact that the word book is both a noun and a
verb. There are many classic examples of this phenomenon, such as"Timeflieslike an arrow", where al
of "time", "flies" and "like" are ambiguous lexical items. If you can't see the ambiguity, think about "time
flies" as analogous to "fruit flies".

Perhaps a more troublesome form of ambiguity is known as attachment ambiguity. Consider the simple
grammar shown here that allows prepositional phrases to attach both to VPs and NPs. So, the sentence
"Mary saw John on the hill with atelescope” has five different structurally different parses, each with a
somewhat different meaning (we'l look at them more carefully in a minute).

Basically we have two choices. One isto generate al the legal parses and let subsequent phases of the
analysis sort them out or somehow to select one - possibly based on learned preferences based on
examples. We will assume that we simply generate all legal parses.

Ambiguity

Mary (((saw (John)) (on the hill)) (with a telescope))

Mary is on the hill and
used a telescope to
see John.

NP Verb

NP

tp - Spring 02 - 57 (E

Slide9.2.58

In this one, the tel escope phrase has attached to the hill NP and so we are talking about a hill with a
telescope. This whole phrase is modifying the verb phrase. Thus Mary is on the hill that has a telescope
when she saw John.

Ambiguity

Mary ((saw (John (on the hill))) (with a telescope))

Mary used a telescope
to see John; John is on
the hill

S S S S S

NP Verb PP

P NP P

NP

Up - Spring 02 - 59 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (27 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide 9.2.60
Ambiguity
In this one, its the fool who is on the hill and who has the telescope that Mary saw.
Mary (saw ((John (on the hill)) (with a telescope)))

Mary saw John; John
S S S S S is on the hill and he

has a telescope.

VP VP WP
v VP P NP
NP PP
NP Veib NP/\PP N
AP NP

to-sprngaz-80

Slide9.2.61

Ambiguity
Now its the fool who is on that hill with the telescope on it that Mary saw.

Mary (saw (John (on the (hill (with a telescope)))))
Note that the number of parses grows exponentially with the number of ambiguous prepositional phrases.

Thisisadifficulty that only detailed knowledge of meaning and common usage can resolve. Zi?;i”ﬁ&lﬁ:;;a

telescope.

S S S S S

o

NP Verb ﬁF’
N NP

p - Spring 02 + 61

6.034 Notes: Section 9.3

Slide9.3.1

Now, we move to consider the semantics phase of processing natural language. 6.034 Artificial Intelligence

¢ Natural Language Understanding
» Getting at the meaning of text and speech
* Not just pattern matching

« Overview

¢ Syntax

* Semantics

to-Sprngoz-1 g

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (28 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

NLU Architecture

Input/Output data Processing stage Other data used

Frequency spectrogram
hl ||
i 1l

Word sequence

Speech Recognition [<+— Sound frequencies

[<+— Grammar

Syntactic Analysis

“He gave Mary

Sentence sructure

Semantics Analysis

Word meanings
He gave Mary

Partial meaning
9x give(x, book, mary) &£
Context of utterance

Sentence meaning

give(john1,book2 Mary1) /&
- Spring 02 -2

4

Slide9.3.3

We want semantics to produce a representation that is somewhat independent of syntax. So, for example,

Slide9.3.2

Recall that our goal isto take in the parse trees produced by syntactic analysis and produce a meaning

representation.

we would like the equivalent active and passive voice versions of a sentence to produce equivalent

semantics representations.

We will assume that the meaning representation is some variant of first order predicate logic. We will

specify what type of variant later.

We have limited the scope of the role of semantics by ruling out context. So, for example, given the
sentence "He gave her the book™, we will be happy with indicating that some male gave the book to

some female, without identifying who these people might be.

Semantics

» Represent meaning independent of surface syntax
» He gave the book to her
« The book was given to her by him
» Usually some variant of predicate calculus is used to

represent meaning
John Smith

 Does not represent context

Give:

agent: ?x (male)

object: book
Remembrance

recipient: ?y (femafe) of things past

tip - Spring 02 - 4

4

Slide9.3.5

Slide9.3.4

So, let's consider avery simple sentence "John hit Harry". We have here the simple parse tree. What

should we expect the semantic representation to be?

Semantics

* Represent meaning independent of surface syntax
* He gave the book to her
* The book was given to her by him
« Usually some variant of predicate calculus is used to
represent meaning
« Does not represent context

Give:
agent: ?x (male)
object: book

recipient: ?y (female)

tip - Spring 02+ 3 Q
Part of therole of pragmatics, the next phase of processing, isto try to make those connections.
Syntax & Semantics
s
NP VP
/\NP
|
Name Verb Name
| I I
John hit Harry
tip - Spring 02+ 5. (4

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (29 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide9.3.6
Syntax & Semantics
In this simple case, we might want something like this, where hit is a predicate and John and Harry are

5 (hit John Harry) constant termsin the logical language. The key thing to notice is that even for this simple sentence the

/\ (hit 2x7y) semantic structure produced is not perfectly parallel to the syntactic structure.
NP vP In thisinterpretation, the meaning of the verb is the center of the semantics. The meaning representation
o John Harry of the subject NP is embedded in the meaning representation of the verb phrase. This suggests that
| producing the semantics will not be atrivial variant of the parse tree. So, let's see how we can achieve
Name Verb Name this.
I I I
John hit Harry

Note, the semantics tree is not parallel in structure to the
syntax tree.

Note: we will be using Lisp-like notation for logic

throughout this section. tp - Spring 02 -6 ‘(E

Slide9.3.7
Compositional Semantics
Our guiding principle will be that the semantics of a constituent can be constructed by composing the
semantics of its constituents. However, the composition will be a bit subtle and we will be using feature
valuesto carry it out.

* The semantics of a constituent can be constructed by
composing the semantics of its constituents.

* (S ?pred) :- (NP ?subj) (VP ?subj ?pred)

N . . " " — The semantics of the subject noun phrase is ?subj, which is combined with the
Let'slook at the sentence rule. We will be exploiting the "two way" matching properties of unification semantios of fHe verb phraseto, producs therseninice semantics, préd
strongly here. This rule says that the meaning of the sentence is picked up from the meaning of the VP, + (VP ?subj ?pred) :- (Verb ?subj ?cbj ?pred) (NP 2obj)
since the second argument of the VP is the same as the semantics of the sentence as awhole. We already *+ (NP ?sem) :- (Name ?sem)

saw thisin our simple example, so it comes as no surprise. Note also that the semantics of the subject NP
is passed as the first argument of the VP (by using the same variable name).

tip - Spring 02 - 7 (E

Slide9.3.8
Compositional Semantics
The VP has two arguments, the semantics of the subject NP (which will be an input) and the resulting
semantics of the VP. In the VP rule, we see that the result semantics is coming from the Verb, whichis
combining the semantics of the subject and the object NPs to produce the result for the VP (and
ultimately the sentence).

» The semantics of a constituent can be constructed by
composing the semantics of its constituents.
* (S ?pred) :- (NP ?subj) (VP ?subj ?pred)
— The semantics of the subject noun phrase is ?subj, which is combined with the
semantics of the verb phrase to produce the sentence semantics, ?pred.
* (VP ?subj ?pred) :- (Verb ?subj ?obj ?pred) (NP ?ocbj)
— This rule is for a transitive verb that expects a single direct object noun phrase,
whose semantics are ?obj
— The semantics of the VP will be constructed from the semantics of the verb,
which will combine the semantics of the subject ?subj and the direct object ?obj
to produce the VP sematics, ?pred.
* (NP ?sem) :- (Name ?sem)
— This rule is for proper names and the semantics of the NP is just that of the
name

tip - Spring 02 - 8 4

Slide 9.3.9 g =
Compositional Semantics
Let'slook at the rule for aparticular Verb. Note that the first two arguments are simply variables which

are then included in the expression for the verb semantics, the predicate hit with two arguments (the + The semantics of a constituent can be constructed by
subject and the object). composing the semantics of its constituents.

* (S ?pred) :- (NP ?subj) (VP ?subj ?pred)
¢ (VP ?subj ?pred) :- (Verb ?subj ?obj ?pred) (NP 2?cbj)
* (NP ?sem) :- (Name ?sem)
« The semantics of individual words are given in the lexicon.
¢ (Verb ?x ?y (hit ?x ?y)) :- hit
— The verb semantics for hit. Note that the subject will match ?x and the direct
object will match ?y and the final semantics will be (hit ?x ?y)
¢ (Name John) :- John
¢ (Name Harry) :- Harry
— Trivial semantics

tip - Spring 02 - 9 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (30 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide9.3.10
Compositional Semantics
We can pull this altogether by simply calling backchain with the goal pattern for a successful parse. We

* The semantics of a constituent can be constructed by will want to retrieve the value of the binding for ?sem, which is the semantics for the sentence.

composing the semantics of its constituents.

¢ (S ?pred) :- (NP ?subj) (VP ?subj ?pred)
* (VP ?subj ?pred) :- (Verb ?subj ?obj ?pred) (NP 2cbj)
* (NP ?sem) :- (Name ?sem)

* The semantics of individual words are given in the lexicon.
e (Verb ?x ?y (hit ?x 2?y)) :- hit
* (Name John) :- John
¢ (Name Harry) :- Harry

* The sentence: “John hit Harry”
* (backchain ‘(S ?sem 0 3))

¢ ?sem = (hit John Harry)

tip - Spring 02 - 10 ‘(E
Slide9.3.11]
Syntax & Semantics
Let'slook at a somewhat more complex example - "Every picture tells astory”. Here is the syntactic
analysis. s
NP VP
S
Det Noun Verb Det Noun
I I I | |
every picture tells a story
1ip - Spring 02 - 11 (E
Slide9.3.12

Syntax & Semantics
Thisis one possible semantic analysis. Note that it follows the pattern of our earlier example. The top-
s (tells (every picture) (a story)) level predicate is derived from the verb and it includes as arguments the semantics of the subject and

/\ (tell 2x 7y) direct object.
NP vP /\
/\ /\NF (?p 7q) (?p 7q)

Det Noun Verb Det Noun
| | | | | every picture a story
every picture tells a story

Note, the semantics tree is not parallel in structure to the
syntax tree.

tip - Spring 02 - 12 4

Slide9.3.13
Another Example
The only innovation in this grammar, besides the new words is a simple semantics for anoun phrase
formed from a Determiner and aNoun - just placing them in alist. We can interpret the result asa
quantifier operating on a predicate. But, what does this mean? It's certainly not legal logic notation.

« The grammar
* (S ?pred) :- (NP ?subj) (VP ?subj ?pred)
¢ (VP ?subj ?pred) :- (Verb ?subj ?obj ?pred) (NP 2cbj)
* (NP ?sem) :- (Name ?sem)
* (NP (?detsem ?nsem)) :- (Det ?detsem) (Noun ?nsem)
e (Verb ?x ?y (tells ?x ?y)) :- tells
¢ (Noun picture) :- picture
¢ (Noun story) :- story
¢ (Det every) :- every
* (Det a) :- a

« The sentence: “Every picture tells a story”
* (backchain ‘(S ?sem 0 5))

¢ ?sem = (tell (every picture) (a story))

Up - Spring 02 - 13 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (31 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide9.3.14
Quantifiers
.) . Furthermore, even if we are generous and consider this alegal quantified expression, then it's ambiguous
* (tell (every picture) (a story)) is ambiguous: - in the usual sense that "Every man loves awoman" is ambitious. That is, is there one story per picture

* ¥ xPicture(x) > 3y Story(y) A Tell(xy) or do all the picturestell the same story.
« Jy Story(y) A ¥ x Picture(x) — Tell(x,y)

* The first of these is the usual interpretation, but consider:
« Every US citizen has a president

torspimgo2: 14 g

Slide9.3.15 s
Quantifiers
Let's pick one of the interpretations and see how we could generateit. At the heart of this attempt isa

definition of the meaning of the determiners "every" and "a", which now become patterns for universally * (tell (every picture) (a story)) is ambiguous:

and existentially quantified statements. Note also that the nouns become patterns for predicate * ¥ xPicture(x) - 3y Story(y) A Tell(x,y)
expressions. * 3y Story(y) A V x Picture(x) — Tell(x,y)

« The first of these is the usual interpretation, but consider:
« Every US citizen has a president
« Let’s consider how we could generate:
¢ V x Picture(x) — 3 y Story(y) A Tell(x,y)
e (all ?x (-> (picture ?x) (exists ?y (and (story ?y) (tell ?x ?y)))))
— every = (all ?7x (-> ?p1 ?2q1))
— picture = (picture 7x)
— tells = (tell 7x ?y)
— a = (exists ?y (and ?p2 ?7q2))
— story = (story ?x)

tlp - Spring 02 - 15 (E

Slide9.3.16
Syntax & Semantics
Our target semantic representation is shown here. Note that by requiring the semantics to be alegal

(all 7x (-> (picture ?x) (exists 7y (and (story ?y) (tell 2x 2y))))) | logical sentence, we've had to switch the key role from the verb to the determiner. That is, the top node
3 @ll 2 (- 2p1 2q1)) in the sentence semantics comes from the determiner, not the verb. The semantics of the verb isfairly

/\ every deeply nested in the final semantics - but it still needs to combine the semantics of the subject and direct
NP vP /\ object NPs. Note, however, that it isincorporating them by using the quantified variable introduced by
/\ /\ (picture ?x) (exists ?y (and ?p2 7q2)) the determiners of the subject and object NPs.
NP a
P /\

Det Noun Verb Det Noun (story ?x) (tell 2x ?y)

| | [|
every picture tells a story

Note, the semantics tree is not parallel in structure to the
syntax tree.

tip - Spring 02+ 16 4
Slide9.3.17 a
Quantifiers
Let's start with the definitions of the words. Here's the definition for the verb "tells". We have seen this .
. . . R ! « (Verb ?x 2y (tell 2?x ?y)) :- tells
before. It combines the semantics of the subject NP (bound to ?x) and the semantics of the object NP « xdenotesithie subjectand 7y 1he dirsct object, tie tesulling SERARLICS IS

(bound to ?y) with the predicate representing the verb to produce the VP semantics. (tell 7x ?y).

Up - Spring 02 - 17 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (32 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

. Slide9.3.18
Quantifiers
. (Verb 7z 2y (tell ?x 7y)) :- tells The nouns W!|| pe denoted by_ one of the quan_tlfled variables |ntrodu_ced b_y _the quantlflers._ 'I_'he noun
« 2x denotes the subject and ?y the direct object, the resulting semantics is places arestriction on the entities that the variable can refer to. In this definition, the quantified variable
(tell 2x ?y). will be bound to ?x and incorporated into the predicate representing the noun.
+ (Noun ?x (picture ?x)) :- picture
+ (Noun ?x (story ?x)) :- story

« ?x will typically be a variable, which we restrict to denote a picture or a
story or (and (young ?x) (male ?x)) for boys, etc.

th-sprngoz- 18
Slide9.3.19 _—
Quantifiers
Finaly, the_ determiners are represented by quanpfled formulas that combine the s_emantlcsdenved from + (Vorb 7z 2y (tell 7z 27)) i~ tells
the noun with the semantics of the VP (for aSUbleCt NP) or of the Verb (fOI‘ an Obl ect NP)' « ?x denotes the subject and ?y the direct object, the resulting semantics is
(tell 7x ?y).
+ (Noun ?x (picture ?x)) :- picture
* (Noun ?x (story ?x)) :- story

« ?x will typically be a variable, which we restrict to denote a picture or a
story or (and (young ?x) (male ?x)) for boys, etc.
« (Det ?x ?p ?q (all ?x (-> ?p ?q))) :- every
+ (Det ?x ?p ?q (exists ?x (and ?p ?q))) :- a
* The ?x is the formal variable, ?p denotes the semantics of the noun and ?q
the semantics of the predicate. For a subject NP, the predicate comes
from the VP of the sentence. For an object NP, the predicate comes from
the verb.

1ip - Spring 02+ 19 ‘4
Slide9.3.20
Quantifiers
. {s 7sent] 5- WND 2% 2vp vsent] WD 2x eve The new sentence (S) rule refl_ectsthedﬁference|n.wherethet0p—level semanticsis being assembled.'
« The semantics of the sentence will be derived from the NP, since the Before, we passed the semantics of the subject NP into the VP, now we go the other way. The semantics
determiner provides the quantifier, which is the top node in the semantics. of theVPisan argument to the subject NP.
« ?x will be the “formal variable” for the quantifier, e.g. (all ?x ...)
¢ (VP X8 2vp) - (Verbi 2xS 2Xo 2VEIb) (NP X0 2verl 2vp) Note that the variable ?x here will not be bound to anything, it is the variable that will be used as the
+ (NP ?x ?p ?np) :- (Det ?x ?noun ?p ?np) (Noun ?x ?noun) . . . N .
. (Verb 7x ?y (tell 2x ?y)) :- tells quantified variable by the determiner's semantics.
* (Noun ?x (picture ?x)) :- picture
+ (Noun ?x (story ?x)) :- story
* (Det ?x ?p ?q (all ?x (-> ?p 2?q))) :- every
+* (Det ?x ?p ?q (exists ?x (and ?p ?q))) :- a

tip - Spring 02 - 20 4

Slide9.3.21 -
Quantifiers
The VP ruleis analogous. The semantics of the Verb will combine areference to the subject and object . (S ?sent) i~ (NP ?x ?vp ?sent) (VP ?x 2vp)
semantics (through their corresponding quantified variables) and the resulting semantics of the Verb will + The semantics of the sentence will be derived from the NP, since the
be combined into the semantics of the NP (which will ultimately be derived from the semantics of the determiner provides the quantifier, which is the top node in the semantics.

. « ?2x will be the “formal variable” for the quantifier, e.g. (all ?x ...)

determlnef). + (VP ?xs ?vp) :- (Verb ?xs ?xo ?verb) (NP ?xo ?verb ?vp)

» Similarly, the semantics of the VP (?vp) will be derived from that of the
direct object NP, e.g. (exists ?y (and (story ?y) (tell ?x ?y)))

» Note that ?xs will be formal variable from subject NP and ?xo will be the
variable from the object NP, they will be combined to form the Verb
semantics (tell ?xs ?xo).

+ (NP ?x ?p ?np) :- (Det ?x ?noun ?p ?np) (Noun ?x ?noun)
« (Verb ?x 2y (tell 2?x ?y)) :- tells
+ (Noun ?x (picture ?x)) :- picture
+ (Noun ?x (story ?x)) :- story
« (Det ?x ?p ?q (all ?x (-> ?p 2q))) :- every
+ (Det ?x ?p ?q (exists ?x (and ?p 2?q))) :- a
Up - Spring 02 21 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (33 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide9.3.22
Quantifiers
(S Psent] n= (NP ?x fvp 7sent) (VE' ?x 2vg) The NP rulein fact takes ?p, which will be the semantics of the Verb phrase and combine them with the

« The semantics of the sentence will be derived from the NP, since the semantics of the noun in the semantics of the Determiner.
determiner provides the quantifier, which is the top node in the semantics.

« ?x will be the “formal variable” for the quantifier, e.g. (all ?x ...)

(VP ?xs 2?vp) :- (Verb ?xs ?xo ?verb) (NP ?xo ?verb ?vp)

« Similarly, the semantics of the VP (?vp) will be derived from that of the
direct object NP, e.g. (exists ?y (and (story ?y) (tell ?x ?y)))

« Note that ?xs will be formal variable from subject NP and ?xo will be the
variable from the object NP, they will be combined to form the Verb
semantics (tell ?xs ?xo).

(NP ?x ?p ?np) :- (Det ?x ?noun ?p ?np) (Noun ?x ?noun)
« The semantics of the NP is produced by the determiner, which
incorporates the semantics of the noun and that of the predicate.
(Verb ?x ?y (tell ?x ?y)) :- tells
(Noun ?x (picture ?x)) :- picture
(Noun ?x (story ?x)) :- story
(Det ?x ?p ?q (all ?x (-> ?p 2?q))) :- every
(Det ?x ?p ?q (exists ?x (and ?p ?q))) :- a

torspmgo222 g

Slide9.3.23
Parsing with Quantifiers
Here we see how the parse works out. Y ou have to follow the bindings carefully to see how it all works
out.

(S ?sent)
What is remarkable about thisis that we were able to map from a set of words to afirst-order logic
representation (which does not appear to be very similar) with arelatively compact grammar and with

X R N EVP X ?vp)
quite generic mechanisms.

VP ?xs ?vp)

ENF’ ?x ?vp ?7sent)

(NP_?x0 ?verb ?vp
NP ?x ?pred ?np)

(NP ?x ?pred ?np,

(Det ?x ?noun ?pred ?n|

Det 7x 2 ?pred 71
(Det ?x ?p ?q (all 2x (-> ?p XA))) Pt Toun Terea T

et ?x ?p ?q (exists ?x (@and\gp ?9)))
(Noun ?x ?noun) (Verb ?xs ?xo ?verb) y\fNoun ?x 7noun)
(Noun ?x (picture ?x)) (Verb ?x ?y (tell ?x ?y)) (Noun ?x (story ?x))
| I |
every picture tells a story

tp - Spring 02 - 23 (E

Slide9.3.24
Quasi-Logical Form
The quantified expression we produced in the previous example is unambiguous, as required to be able
to write an expression in first order logic. However, natural language is far from unambiguous. We have
seen examples of syntactic ambiguity, lexical and attachment ambiguity in particular, plus there are
many examples of semantic ambiguity, for example, ambiguity in quantifier scope and ambiguity on
who or what pronouns refer to are examples.

» Semantics tries to capture sentence meaning independent
of context. Producing the correct representation in First
Order Logic usually requires context to resolve the
ambiguity in language:

* Syntactic ambiguity: “Mary saw John on the hill with a telescope”

« Lexical ambiguity: “We went to the bank” {of the river? Fleet Bank?}
* Quantifier scope ambiguity: “Every man loves a woman”

« Referential ambiguity: “He gave her the book”, “Stop that!”

tip - Spring 02 - 24 4

Slide9.3.25
Quasi-Logical Form
One common approach to semanticsis to have it produce a representation that is not quite the usual
logical notation, sometimes called quasi-logical form, that preserves some of the ambiguity in the input,
leaving it to the pragmatics phase to resolve the ambiguities employing contextua information.

« Semantics tries to capture sentence meaning independent
of context. Producing the correct representation in First
Order Logic usually requires context to resolve the
ambiguity in language:

« Syntactic ambiguity: “Mary saw John on the hill with a telescope”

« Lexical ambiguity: “We went to the bank” {of the river? Fleet Bank?}
* Quantifier scope ambiguity: “Every man loves a woman”

» Referential ambiguity: “He gave her the book”, “Stop that!”

« Instead of producing FOL, produce quasi-logical form that
preserves some of the ambiguity. Leave it for next phase
to resolve the ambiguity.

« (tell (every ?x (picture ?x)) (exists ?x (story ?x)))

Up - Spring 02 - 25 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (34 of 40)5/11/2007 2:25:59 PM

Slide9.3.26
Quasi-Logical Form

* Allow the use of quantified terms such as
« (every ?x (picture ?x))
 (exists ?x (story ?x))

to-spingo2:25 g

Slide9.3.27

In quasi-logical notation, one also typically extends the range of available quantifiers to correspond more
closely to the range of determiners available in natural language. One important case, is the determiner
"the", which indicates a unique descriptor.

o Slide9.3.28
Quasi-Logical Form

* Allow the use of quantified terms such as
* (every ?x (picture ?x))
 (exists ?x (story ?x))
+ Allow a more general class of quantifiers
« (the ?x (and (big ?x) (picture ?x) (author ?x “Sargent”)))
¢ (most ?x (child ?x))
¢ (name ?x John)
« (pronoun ?x he)
» These will have to be converted to FOL and given an
appropriate axiomatization.

inference.

tip - Spring 02 - 28 4

Slide9.3.29

Let'sillustrate how the type of language processing we have been discussing here could be used to build
an extremely simple database system. We'll assume that we want to deal with a simple genealogy
domain. We will have facts in our database describing the family relationships between some set of
people. We will not restrict ourselves to just the minimal set of facts, such as parent, male and female,
we will also keep derived relationships such as grandparent and cousin.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

One common aspect of quasi-logica notation is the use of quantified terms. These terms indicate the
nature of the intended quantification but do not specify the scope of the quantifier in the sentence and

thus preserves the ambiguity in the natural language. Note that we are treating these quantified
expressions as terms, and using them as arguments to functions and predicates - which is not legal FOL.

Quasi-Logical Form

« Allow the use of quantified terms such as
* (every ?x (picture ?x))
* (exists ?x (story ?x))
« Allow a more general class of quantifiers
« (the ?x (and (big ?x) (picture ?x) (author ?x “Sargent”)))
« (most ?x (child ?x))
* (name ?x John)
« (pronoun ?x he)

tp - Spring 02 - 27

4

These quantified terms and generalized quantifiers will require conversion to standard FOL together with
a careful axiomatization of their intended meaning before the resulting semantics can be used for

A very simple language system
The Database
« Genealogy database
¢ (parent x y), (male x), (female x)

¢ (grandparent x y), (aunt/uncle x V),
(sibling x y), (cousin x y)

Up - Spring 02 - 29

¢

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (35 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

A very simple language system Slide9.3.30

The Database

» Genealogy database
¢ (parent x y), (male x), (female x)

In fact, we will assume that all the relationships between people we know about are explicitely in the
database. We can accomplish them by running a set of Prolog-like rulesin forward chaining fashion
whenever anew fact is added. We do this, rather than do deduction at retrieval time because of issues of

* (grandparent x y), (aunt/uncle x y), equality, which we will discuss momentarily.

(sibling x y), (cousin x y)
» Assume relations explicit in database.

+ Use forward-chaining of rules to expand relations when
new facts added.

to-spnguz-0

Slide9.3.31 A very simple language system
The Datab

We will also alow assertions of the form (is x y) which indicate that two symbols denote the same o paiehase

person. We will assume that the forward chaining rules will propagate this equality to all the relevant * Genealogy database

facts. That is, we substitute equals for equalsin each predicate, explicitely. Thisis not efficient, but it is * (parent x y), (male x), (female x)
s’mple e (grandparent x y), (aunt/uncle x y),
: (sibling x y), (cousin x y)

« Assume relations explicit in database.

« Use forward-chaining of rules to expand relations when
new facts added.

- (is x y) indicates two symbols denote same person

tlp - Spring 02 - 31 ,(E

A very simple language system Slide9.3.32

The Database
» Genealogy database

¢ (parent x y), (male x), (female x)

We can now do very simple retrieval from this database of facts using our backchaining algorithm. We
initialize the goa stack in backchaining with the query. If the query is a conjunction, weinitialize the

stack with all the conjuncts.
¢ (grandparent x y), (aunt/uncle x V),

(sibling x y), (cousin x y)
» Assume relations explicit in database.
* Use forward-chaining of rules to expand relations when
new facts added.

- (is x y) indicates two symbols denote same person
* Retrieval query examples:

*« (and (female ?X) (parent ?x John))

¢« (and (male ?x) (cousin Mary ?X))

¢ (grandparent Harry ?x)

tip - Spring 02 - 32 (E

Slide9.3.33 A very simple language system

)) .) . . P ing Overvi
Here we see a brief overview of the processing that we will do to interact with the genealogy database. rocessing Sverview

“John is a cousin of Mary.” “Who is a cousin of Mary.”

We will be able to accept declarative sentences, such as "John isacousin of Mary". These sentences will
be processed by a grammar to obtain a semantic representation. This representation will then be
interpreted as a set of facts to be added to the database.

Syntax and Semantics
(Prolog Rules)

\/
/\

We can also ask questions, such as"Who is a cousin of Mary". Our grammar will produce a semantic i - S, L S——
representation. The semantics of this type of sentence is converted into a database query and passed to 5 B B N
the database.

Interpret Semantics

/\

Let'slook in more detail at the steps of this process.

(is john sk.cousin.7) (is ?x_7 ?x_3)
(cousin mary (cousin mary ?x_3)
sk.cousin:

Database
(Prolog Rules)

)
\

flp - Spring 02 - 33 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (36 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

A very simple language system
The Grammar

 “John is a cousin of Mary.”
- (S (asserE_?sem) g G
(NP 2?subj .y

(VP ?subj ?sem ..)

signal an assertion

toey
(NP ?subj ..)
(NP ?sem ..)

=+ signal a query

e (S (query-wh™%sem) .) :-
(NP ?subj ..)
(VP ?subj ..)

tip - Spring 02 - 34.

Slide9.3.34

¢

Slide9.3.35

Here we see one possible semantics for the declarative sentence "John is acousin of Mary". The
operation assert indicates the action to be taken. The body isin quasi-logica form; the quantified
term (exi sts ?x_1 (cousin mary ?x_1)) isbasically telling us there exists a person that isin
the cousin relationship to Mary. The outermost i s assertion is saying that John denotes that person. This

isbasically interpreting this quasi-logical form as:

] x . (is John x) ”~ (cousin Mary Xx)

A very simple language system
The Semantics

* “John is a cousin of Mary.”
¢ (assert (is john
(exists ?x 1 (cousin mary ?x 1))))

« “|s John a cousin of Mary?”

¢ (query-is (is john
(exists ?x 5 (cousin mary ?x_5))))

tip - Spring 02 - 36

Slide9.3.36

¢

Slide 9.3.37

We can aso have a question such as "Who isa cousin of Mary", which is similar except that John is
replaced by aterm indicating that we are interested in determining the value of this term.

We will need agrammar built along the lines we have been discussing. One of the things the grammar
does is classify the sentences into declarative sentences, such as "John is a cousin of Mary", which will
cause usto assert afact in our database, and questions, such as, "Is John a cousin of Mary" or "Whoisa
cousin of Mary", which will cause usto query the database.

A very simple language system
The Semantics

+ “John is a cousin of Mary.”
¢ (assert (is john
(exists ?x_l (cousin mary ?x_l))))

tlp - Spring 02 - 35

¢

The semantics of the question "Is John a cousin of Mary?" is essentially identical to that of the
declarative form, but it is prefixed by a query operation rather than an assertion. So, we would want to
use this to query the database rather than for asserting new facts.

A very simple language system
The Semantics

* “John is a cousin of Mary.”
¢ (assert (is john
(exists ?x 1 (cousin mary ?x 1))))

* “Is John a cousin of Mary?”
* (query-is (is john
(exists ?x 5 (cousin mary ?x 5))))

* “Who is a cousin of Mary?”

¢ (query-wh (is (wh ?x 7 who)
(exists ?x 3 (cousin mary ?x 3))))

Up - Spring 02 - 37

¢

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (37 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

A very simple language system
Using the Semantics

 “John is a cousin of Mary.”

¢ (assert (is john
(exists ?x_l (cousin mary ?x_l))))

* Assign skolem constant for ?x_1, e.g. sk.cousin.7
» Convert body of exists into one or more facts
* Replace (exists ?x ...) with skolem constant

tip - Spring 02 - 38

¢

Slide9.3.39

In this example, we get two new facts. Oneis from the outer i s assertion which tells us that John
denotes the same person as the skolem constant. The second fact comes from the body of the quantified
term which tells us some properties of the person denote by the skolem constant.

A very simple language system
Using the Semantics
* “Who is a cousin of Mary?”
¢ (query-wh (is (wh ?x 7 who)
(exists ?x 3 (cousin mary ?x 3))))
» Convert body of exists into one or more additional
conditions for query

* Replace (exists ?x ...) with ?x
* Replace (wh ?y ...) with ?y
* Retrieve from database:

s (and (is ?x_7 ?x_3)

» ?x_7/John

* ?x 3/sk.cousin.?7

(cousin mary ?x_3))

tip - Spring 02 - 40

¢

Slide9.3.41

Here are some examples that show that this approach can be used to do alittle inference above and
beyond what is explicitely stated. Note that the assertions do not mention cousin, uncle, sister or sibling .
relations, those are inferred. So, we are going beyond what an Internet search engine can do, that is, .

pattern match on the presence of particular words.

This example has been extremely simple but hopefully it illustrates the flavor of how such a system may .
be built using the tools we have been developing and what could be done with such a system. .

Slide9.3.38

Given the semantics, we have to actually decide how to add new facts and do the retrieval. Here we show
an extremely simple approach that operates for these very simple types of queries (note that we are only
using existentially quantified terms).

We are basically going to turn the assertion into alist of ground facts to add to the database. We will do
this by skolemizing. Since we have only existentially quantified variables, thiswill eliminate all
variables.

We replace the quantified terms with the corresponding skolem constant and we convert the body of the
quantified term into a set of facts that describe the constant.

A very simple language system
Using the Semantics

* “John is a cousin of Mary.”
¢ (assert (is john
(exists ?x_l (cousin mary ?x_l))))

« Assign skolem constant for ?x_1, e.g. sk.cousin.7
« Convert body of exists into one or more facts

* Replace (exists ?x ...) with skolem constant

« Add to the database:

¢ (is john sk.cousin.7)
¢ (cousin mary sk.cousin.7)

tlp - Spring 02 - 39 ,(E

Slide 9.3.40

We process the question in a similar way except that instead of using skolem constants we keep the
variables, since we want those to match the constants in the database. When we perform the query, 2x_7
is bound to John as expected. In general, there may be multiple matches for the query, some may be
skolem constants and some may be people names. We would want to return the specific names whenever
possible.

Some Examples

« Assertions
John is the father of Tom.
Mary is the female parent of Tom.
. Bill is the brother of John.
. Jim is the male child of Bill.
Jane is the daughter of John.
Mary is the mother of Jane.
* Questions
. Is Jim the cousin of Tom?) Yes
. Who is the uncle of Tom?) Bill
. Is Bill the uncle of Tom?) Yes
. Is Jane the sister of Tom?) Yes
. Who is a child of Mary?) Tom
. Who is a sibling of Tom?) Jane

tlp - Spring 02 - 41 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (38 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Discourse Context

» Anaphora = “use of a word referring to or replacing earlier
words”

« Jack lost his book. He looked for it for hours. Eventually he found
it in his backpack.

tip - Spring 02 - 42

Slide9.3.43

Another phenomenon is called ellipsis, when words or phrases are missing and need to befilled in from
context. In this example, the phrase "complete the job" is missing from the enf of the second conjoined

sentence.

Discourse Context

» Anaphora = “use of a word referring to or replacing earlier
words”

« Jack lost his book. He looked for it for hours. Eventually he found
it in his backpack.

* Ellipsis = “omission from a sentence of words needed to
complete construction of meaning”
« You did not complete the job as well as he did.

entity (or entities)”
« the tall man, the red book, the president

tp - Spring 02 - 44

+ Definite descriptions = “used to refer to uniquely identifiable

Slide 9.3.45

Even beyond conversational context, understanding human language requires access to the whole range
of human knowledge. Even when speaking with a child, one assumes agreat deal of "common sense"
knowledge that computers are, as yet, sorely lacking in. The problem of language understanding at this
point merges with the general problem of knowledge representation and use.

Slide 9.3.42

At this point, we'll touch briefly on a set of phenomena that are beyond the scope of pure semantics
because they start dealing with the issue of context.

One general class of language phenomenais called anaphor a. thisincludes pronoun use, where aword
is used to refer to other words appearing either elsewhere in the sentence or in another sentence.

Discourse Context

* Anaphora = “use of a word referring to or replacing earlier
words”

» Jack lost his book. He looked for it for hours. Eventually he found
it in his backpack.

« Ellipsis = “omission from a sentence of words needed to
complete construction of meaning”
« You did not complete the job as well as he did.

tp - Spring 02 - 43 (E

Slide9.3.44

Another important mechanism in language is the use of definite descriptions, signaled by the determiner
"the". The intent isthat the listener be able to identify an entity previously mentioned or expected to be
known.

All of these are linguistic mechanisms for incorporating context and require that alanguage
understanding system that is engaged in an interaction with a human keep a context and be able to
identify entities and actionsin context based on the cluesin the sentence. Thisis an area of active
research and some systems with competence in this area have been built.

World Knowledge

» John needed money. He went to the bank.
* “bank of the river Charles?” “Fleet Bank?”
« Need to know that Fleet Bank has money but the bank of
the Charles does not.

« John went to the store. He bought some bread.
« Did John go to the hardware store?
« Etc.

Up - Spring 02 - 45 (E

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (39 of 40)5/11/2007 2:25:59 PM

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide9.3.46
Applications
Real applications of natural language technology for human computer interfaces require avery limited
scope so that the computer can get by with limited language skills and can have enough knowledge about
the domain to be useful. However, it is difficult to keep people completely within the language and
knowledge boundaries of the system. Thisiswhy the use of natural language interfacesis still limited.

* Human computer interaction:

Restricted domains — flight reservations, classifying e-mails into a
few classes, redirecting caller to one of a few destinations.
Limited syntax

Limited vocabulary

Limited context

Limited actions

Itis very hard for humans to understand what the limits of the
system are. Can be frustrating.

to-spimgo2-45

Slide 9.3.47
Applications
Thereis, however, arapidly increasing use of limited language processing in tasks that don't involve . .
direct interaction with a human but do require some level of understanding of language. These tasks are * Human computer interaction:

characterized by situations where there is value in even limited capabilities, e.g. doing the first draft of a Restricted domains —flight reservations, classifying e-mails into a

translation or a building a quick summary of amuch longer news article. f:fw_flzssest' fedifecting Callerto:one 6f & few destinations:
Imited syntax

Limited vocabulary
Limited context
Limited actions
Itis very hard for humans to understand what the limits of the
system are. Can be frustrating.
« Summarization, Search, Translation
» Broader domain
« Performance does not have to be perfect to be useful

| expect to see an explosion of applications of natural language technologies in the near future.

tp - Spring 02 - 47 (E

Slide9.3.48
Sources

) .) Here are some sources that were used in the preparation of these slides and which can serve as additional
* James Allen, Natural Language Understanding, Benjamin/Cummings

;) o) ” reading material.
» Peter Norvig, Paradigms of Artificial Intelligence Programming, Morgan
Kauffman
« Slides by Alison Cawsey ()

tip - Spring 02 - 48 4

file://1/1.PSF/tlp/MacDocuments/Teaching/6.034/07/Chapter9/rul es-nlp-handout-07.html (40 of 40)5/11/2007 2:25:59 PM

	Local Disk
	6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

