
6.034 Quiz 1, Spring 2007

1 Decision Trees (10 points)

1. (5 pts) Write an expression for the average entropy of the test x2 > −0.5 for the following
data:

i xi
1 xi

2 yi

1 -1 -1 -1
2 -1 1 -1
3 -1 0 1
4 1 1 1

You do not need to find the final numerical value, but do not leave any variables in your
expression.
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2. (5 pts) For the data above, write a test (of the form xi > value) considered by the decision
tree algorithm, that has average entropy of 1.

x2 > 0.5

Note that there are other tests that don’t split the data, which trivially have entropy of 1, but
those would not be considered by the decision tree algorithm.
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2 Nearest Neighbors (10 points)

In the following figure, shade in the region in the feature space below where the predictions of 1-
nearest-neighbors would disagree with the predictions from a standard decision tree. The training
data are only the three points shown.
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In the shaded region, nearest neighbors predicts the negative class while a decision tree would
predict the positive class.
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3 SVM (15 points)

Given the following training data:
i xi

1 xi
2 yi

1 0 0 1
2 -1 -1 1
3 1 1 -1
4 2 2 -1
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the Lagrange parameters αi that would be found for a linear kernel SVM are:

1. α1 = −1, α4 = −1

2. α1 = −1, α3 = −1

3. α1 = 1, α4 = 1

4. α1 = 1, α3 = 1 is correct

5. α1 = 2, α4 = 2

6. α1 = 2, α3 = 2

and the value of the offset is:

1. b = 1 is correct

2. b = 0

3. b = −1

Circle all the true choices.
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Note that all the αi are required to be positive, so that rules out the first two choices. We also
know that

∑
i αiy

i = 0 but all the remaining choices satisfy this condition. However, we can see by
inspection that points 1 and 3 are the support vectors, so α2 = α4 = 0, thus ruling out choices 3
and 5. So, only choices 4 and 6 are plausible.

Recall that the weight vector will be a linear combination of the support vectors:

[w1, w2] = (α1)(1)[0, 0] + (α3)(−1)[1, 1] = [−α3,−α3]

We also know that the margin for the support points must be equal to 1. Simply substitute point
3 into the definition of margin (yi(w · xi + b)):

−1([−α3,−α3] · [1, 1] + b) = −1(−2α3 + b) = 1

Similarly, for point 1

1([−α3,−α3] · [0, 0] + b) = b = 1

From these we can see that α3 = 1 and b = 1.
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4 Perceptron (20 points)

We saw that it was possible to generalize SVMs to kernel SVMs so as to handle non-linearly
separable data. We can generalize the perceptron to a kernel perceptron in a similar fashion.
Indicate precisely how to generalize the learning algorithm and the use of the perceptron to classify
data, given a kernel K(., .).

A simple modification of the dual perceptron algorithm gives us a kernel perceptron, this is
essentially identical to what we did for SVM’s:

• Evaluating the margin is normally done by
∑m

j=1 αjy
jxj ·xi, we replace that with

∑m
j=1 αjy

jK(xj , xi)

• In the kernel case, we don’t return a weight vector, we just return the non-zero αj and the
corresponding xj (the support vectors), this is what we will need to do the classification.

• Classification of an unknown point u is done by sign(
∑m

j=1 αjy
jK(xj , u))

Many people tried to modify the non-dual form of the perceptron algorithm by using K(w, xi) to
compute the margin. However, then they had to attempt to deal with the update rule that mentions
w and xi explicitly (not in dot product) by using the actual feature mapping function. However, the
whole point of the kernel is that we never want to use that feature mapping (which may actually
not be finitely representable), we want to only use dot products (the kernel values). There are a
lot of additional conceptual problems with this approach, e.g. it needs to add transformed feature
vectors to get a weight vector, which now would have the dimensionality of the high dimensional
space, which would mean that it is the wrong thing to use in connection with the kernel in the first
place.
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5 Regression (20 points)

In the notes, we saw regression trees, which split the data so as to minimize average variance and
then return the average y values of the data at the leaf nodes of the tree.

Imagine that we want to, instead, fit straight lines to the data at the leaf nodes. That is, we
store a linear equation y =

∑
n anxn + b at each leaf. To make a prediction for a new point, we find

the correct leaf and then substitute the features of the point into the equation to get a predicted y.
What measure would you use for deciding which feature to split the data on while building the

tree? Explain why your measure is a good choice.

You want to measure how well the best lines fit the data sets produced by a split.
To evaluate a feature test, find the best line fit (by whatever method) for the data sets produced

by the split, measure the error in the fit, for example, the sum of the square of the actual y’s and the
predicted y’s from the equation. Then, find the weighted average of this error for the two splits and
use that in the same way we have used entropy and variance in previous decision-tree algorithms.

Note that we want to stop splitting if the data sets become smaller than 3 points.
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6 Neural Nets (25 points)

Consider a single artificial neural net unit in which we replace the sigmoid function with a quadratic
function y = z2, where z is the activation of the unit, the weighted sum of the inputs.
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1. (10 pts) Give the (on-line) gradient descent learning rule for weight w1 of this unit. Assume
the training example is xi = [xi

1, x
i
2]; yi. Your formula should involve this training example,

the unit output y, the unit activation z and the step size η.

The error (for a single training point) is E = 1
2(y − yi)2.

The gradient of the error is ∇wE = (y − yi)[ ∂y
∂w1

, ∂y
∂w2

].

The update rule is w = w − η∇wE, so

w1 = w1 − η(y − yi)
∂y

∂w1

and, since y = z2 = (w1x
i
1 + w2x

i
2 − w0)2, then

∂y

∂w1
= 2(w1x

i
1 + w2x

i
2 − w0)xi

1 = 2zxi
1

finally
w1 = w1 − 2η(y − yi)zxi

1
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2. (5 pts) Give a rule for mapping the output of unit (y) into two class labels: 0 and 1. There
are many such rules possible, feel free to pick one that simplifies your answer to the next part
of this question.

Predict 1 if y ≤ 3 and predict 0 otherwise.

3. (10 pts) Pick weights for this unit so that it can accurately classify the data points below.
Also draw (approximately) the decision boundaries on the figure.
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w0 = 0
w1 = 1
w2 = 1

The decision boundaries can be y = z2 = (x1 + x2)2 = 3. Many other possibilities work as
well, but this is probably simplest.
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