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6.034 Notes: Section 2.1

Slide 2.1.1 
So far, we have talked a lot about building systems that have knowledge represented in them explicitly. 
One way to acquire that knowledge is to build it in by hand. But that can be time-consuming and error 
prone. And many times, humans just don't have the relevant information available to them. 

For instance, you are all experts in visual object recognition. But it's unlikely that you could sit down 
and write a program that would do the job even remotely as well as you can. 

But, in lots of cases, when we don't have direct access to a formal description of a problem, we can 
learn something about it from examples. 

Slide 2.1.2 
The word "learning" has many different meanings. It is used, at least, to describe 

●     memorizing something 
●     learning facts through observation and exploration 
●     development of motor and/or cognitive skills through practice 
●     organization of new knowledge into general, effective representations 

Slide 2.1.3 
Herb Simon (an important historical figure in AI and in Economics) gave us this definition of learning: 

Learning denotes changes in the system that are adaptive in the sense that they enable the system to do 
the task or tasks drawn from the same population more efficiently and more effectively the next time. 

This is not entirely precise, but it gives us the idea that learning systems have to acquire some 
information from examples of a problem, and perform better because of it (so we wouldn't call a 
system that simply logs all the images it has ever seen a learning system, because, although, in some 
sense, it knows a lot, it can't take advantage of its knowledge). 
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Slide 2.1.4 
One of the most common kinds of learning is the acquisition of information with the goal of making 
predictions about the future. But what exactly gives us license to imagine we can predict the future? Lots 
of philosophers have thought about this problem. David Hume first framed the problem of induction as 
follows: 

●     Piece of bread number 1 was nourishing when I ate it. 
●     Piece of bread number 2 was nourishing when I ate it. 
●     Piece of bread number 3 was nourishing when I ate it. 
●     Piece of bread number 100 was nourishing when I ate it. 
●     Therefore, all pieces of bread will be nourishing if I eat them. 

Slide 2.1.5 
And here, for no good reason, is a photo of David Hume's Tomb, just because I saw it once in 
Edinburgh. 

Slide 2.1.6 
When and why is it okay to apply inductive reasoning?? 

My favorite quote on the subject is the following, exerpted from Bertrand Russell's "On Induction": (see 
http://www.ditext.com/russell/rus6.html for the whole thing) 

If asked why we believe the sun will rise tomorrow, we shall naturally answer, 'Because it has always 
risen every day.' We have a firm belief that it will rise in the future, because it has risen in the past. 

The real question is: Do any number of cases of a law being fulfilled in the past afford evidence that it 
will be fulfilled in the future? 

It has been argued that we have reason to know the future will resemble the past, because what was the 
future has constantly become the past, and has always been found to resemble the past, so that we really 
have experience of the future, namely of times which were formerly future, which we may call past 
futures. But such an argument really begs the very question at issue. We have experience of past futures, 
but not of future futures, and the question is: Will future futures resemble past futures? 

We won't worry too much about this problem. If induction is not, somehow, justified, then we have no 
reason to get out of bed in the morning, let alone study machine learning! 

Slide 2.1.7 
When viewed technically, there are lots of different kinds of machine learning problems. We'll just 
sketch them out here, so you get an idea of their range. 
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Slide 2.1.8 
Supervised learning is the most common learning problem. Let's say you are given the weights and 
lengths of a bunch of individual salmon fish, and the weights and lengths of a bunch of individual tuna 
fish. The job of a supervised learning system would be to find a predictive rule that, given the weight and 
length of a fish, would predict whether it was a salmon or a tuna. 

Slide 2.1.9 
Another, somewhat less well-specified, learning problem is clustering. Now you're given the 
descriptions of a bunch of different individual animals (or stars, or documents) in terms of a set of 
features (weight, number of legs, presence of hair, etc), and your job is to divide them into groups, or 
possibly into a hierarchy of groups that "makes sense". What makes this different from supervised 
learning is that you're not told in advance what groups the animals should be put into; just that you 
should find a natural grouping. 

Slide 2.1.10 
Another learning problem, familiar to most of us, is learning motor skills, like riding a bike. We call this 
reinforcement learning. It's different from supervised learning because no-one explicitly tells you the 
right thing to do; you just have to try things and see what makes you fall over and what keeps you 
upright. 

Supervised learning is the most straightforward, prevalent, and well-studied version of the learning 
problem, so we are going to start with it, and spend most of our time on it. Most of the fundamental 
insights into machine learning can be seen in the supervised case. 

Slide 2.1.11 
One way to think about learning is that you're trying to find the definition of a function, given a bunch of 
examples of its input and output. This might seem like a pretty narrow definition, but it actually covers a 
lot of cases. 
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Slide 2.1.12 

●     Learning how to pronounce words can be thought of as finding a function from letters to sounds. 
●     Learning how to throw a ball can be thought of as finding a function from target locations to joint 
torques. 
●     Learning to recognize handwritten characters can be thought of as finding a function from 
collections of image pixels to letters. 
●     Learning to diagnose diseases can be thought of as finding a function from lab test results to disease 
categories. 

Slide 2.1.13 
The problem of learning a function from examples, is complicated. You can think of at least three 
different problems being involved: memory, averaging, and generalization. We'll look at each of these 
problems, by example. 

Slide 2.1.14 
We'll do this in the context of a silly example problem. Imagine that I'm trying predict whether my 
neighbor is going to drive into work tomorrow, so I can ask for a ride. Whether she drives into work 
seems to depend on the following attributes of the day: the temperature, what kind of precipitation is 
expected, the day of the week, whether she needs to shop on the way home, and what she's wearing. 

Slide 2.1.15 
Okay. Let's say we observe our neighbor on three days, which are described in the table, which specifies 
the properties of the days and whether or not the neighbor walked or drove. 
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Slide 2.1.16 
Now, we find ourselves on a snowy 19-degree Monday, when the neighbor is wearing casual clothes and 
going shopping. Do you think she's going to drive? 

Slide 2.1.17 
The standard answer in this case is "yes". This day is just like one of the ones we've seen before, and so it 
seems like a good bet to predict "yes." This is about the most rudimentary form of learning, which is just 
to memorize the things you've seen before. Still, it can help you do a better job in the future, if those 
same cases arise again. 

Slide 2.1.18 
Things are not always as easy as they were in the previous case. What if you get this set of data? 

Slide 2.1.19 
Now, we ask you to predict what's going to happen. You've certainly seen this case before. But the 
problem is that it has had different answers. Our neighbor is not entirely reliable. 
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Slide 2.1.20 
There are a couple of plausible strategies here. One would be to predict the majority outcome. The 
neighbor walked more times than she drove in this situation, so we might predict "walk". Another option 
would be to decline to commit to one prediction, but to generate a probability instead. You might answer 
that you think, with probability 5/7, she will walk. 

In this course, we'll give a treatment of machine learning that doesn't really rely on probability. But in 
many cases, the algorithms and concepts we talk about have probabilistic foundations, and there are 
many more sophisticated techniques that rely on a deep understanding of probability. So, if you like 
machine learning, take probability, and then take the machine learning class! 

Slide 2.1.21 
Here's another situation in which noise is an issue. This time, the noise has corrupted our descriptions of 
the situation (our thermometer is somewhat unreliable, as is our ability to assess the formality of the 
neighbor's clothing, given her peculiar taste). 

Slide 2.1.22 
In this case, we'd like to recognize that the day that we're asked to do the prediction for is apparently 
similar to cases we've seen before. It is ultimately impossible to tell whether this day is really different 
from those other days, or whether our sensors are just acting up. We'll just have to accept that 
uncertainty. 

So, we'll have to treat this as an instance of the more general problem of generalization. 

Slide 2.1.23 
Take a good look at this data set. 
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Slide 2.1.24 
Now, consider this day. It's 58 degrees and raining on a Monday. The neighbor is wearing casual 
clothing and doesn't need to shop. Will she walk or drive? 

The first thing to observe is that there's no obviously right answer. We have never seen this case before. 
We could just throw up our hands and decline to make a prediction. But ultimately, we have to decide 
whether or not to call the neighbor. So, we might fall back on some assumptions about the domain. We 
might assume, for instance, that there's a kind of smoothness property: similar situations will tend to have 
similar categories. 

You might plausibly make any of the following arguments: 

●     She's going to walk because it's raining today and the only other time it rained, she walked. 
●     She's going to drive because she has always driven on Mondays. 
●     She's going to walk because she only drives if she is wearing formal clothes, or if the temperature is 
above 90 or below 20. 

The question of which one to choose is hard. It's one of the deep underlying problems of machine 
learning. We'll look at some examples to try to get more intuition, then come back and revisit it a bit 

more formally in the next section. 

Slide 2.1.25 
Imagine that you were given all these points, and you needed to guess a function of their x, y coordinates 
that would have one output for the red ones and a different output for the black ones. 

Slide 2.1.26 
In this case, it seems like you could do pretty well by defining a line that separates the two classes. 
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Slide 2.1.27 
Now, what if we have a slightly different configuration of points? We can't divide them conveniently 
with a line. 

Slide 2.1.28 
But this parabola-like curve seems like it might be a reasonable separator. 

Slide 2.1.29 
Now, what? This seems much trickier. There are at least a couple of reasonable kinds of answers. 

Slide 2.1.30 
Here's an answer. It successfully separates the reds from the blacks. But there's something sort of 
unsatisfactory about it. Most people have an intuition that it's too complicated. 
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Slide 2.1.31 
Here's another answer. It's not a perfect separator; it gets some of the points wrong. But it's prettier. 

In general, we will always be faced with making trade-offs between hypotheses that account for the data 
perfectly and hypotheses that are, in some sense, simple. There are some mathematical ways to 
understand these trade-offs; we'll avoid the math, but try to show you, intuitively, how they come up and 
what to do about them. 

Slide 2.1.32 
There are lots and lots of different kinds of learning algorithms. I want to show you cartoon versions of a 
couple of them first, and then we'll get down to the business of understanding them at a detailed 
algorithmic level. 

The learning methods differ both in terms of the kinds of hypotheses they work with and the algorithms 
they use to find a good hypothesis given the data. 

Slide 2.1.33 
Here's the most simple-minded of all learning algorithms (and my personal favorite (which might imply 
something about me!)). It's called nearest neighbor (or lazy learning). You simply remember all the 
examples you've ever seen. 

Slide 2.1.34 
When someone asks you a question, you simply find the existing point that's nearest the one you were 
asked about, and return its class. 
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Slide 2.1.35 
So, in this case, the nearest point to the query is red, so we'd return red. 

Slide 2.1.36 
Another well-loved learning algorithm makes hypotheses in the form of decision trees. In a decision tree, 
each node represents a question, and the arcs represent possible answers. We can use this decision tree to 
find out what prediction we should make in the drive/walk problem. 

Slide 2.1.37 
We'd start by asking what the current precipitation is. If it's snow, we just stop asking questions and 
drive. 

Slide 2.1.38 
If there's no precipitation, then we have to ask what kind of clothes the neighbor is wearing. If they're 
formal, she'll drive. If not, we have to ask another question. 
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Slide 2.1.39 
We can always continue asking and answering questions until we get to a leaf node of the tree; the leaf 
will always contain a prediction. 

Hypotheses like this are nice for a variety of reasons. One important one is that they're relatively easily 
interpretable by humans. So, in some cases, we run a learning algorithm on some data and then show the 
results to experts in the area (astronomers, physicians), and they find that the learning algorithm has 
found some regularities in their data that are of real interest to them. 

Slide 2.1.40 
Most people have heard of neural networks. They can represent complicated hypotheses in high-
dimensional continuous spaces. They are attractive as a computational model because they are composed 
of many small computing units. They were motiviated by the structure of neural systems in parts of the 
brain. Now it is understood that they are not an exact model of neural function, but they have proved to 
be useful from a purely practical perspective. 

Slide 2.1.41 
In neural networks, the individual units do a simple, fixed computation that combines the values coming 
into them with "weights" on the arcs. The learning process consists of adjusting the weights on the arcs 
in reaction to errors made by the network. 

Slide 2.1.42 
Machine learning methods have been successfully fielded in a variety of applications, including 

●     assessing loan credit risk 
●     detecting credit card fraud 
●     cataloging astronomical images 
●     deciding which catalogs to send to your house 
●     helping NBA coaches analyze players' performance 
●     personalizing news and web searches 
●     steering an autonomous car across the US 

Now, we'll roll up our sleeves, and see how all this is done. 
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6.034 Notes: Section 2.2

Slide 2.2.1 
A supervised learning problem is made up of a number of ingredients. The first is the data (sometimes 
called the training set). The data, D, is a set of m input-output pairs. We will write the ith element of 
the data set as xi, yi. In the context of our old running example, an xi would be a vector of values, one 
for each of the input features, and a yi would be an output value (walk or drive). 

Slide 2.2.2 
Each xi is a vector of n values. We'll write xi

j for the jth feature of the ith input-output pair. We'll 

consider different kinds of features. Sometimes we'll restrict ourselves to the case where the features are 
only 0s and 1s. Other times, we'll let them be choosen from a set of discrete elements (like "snow", 
"rain", "none"). And, still other times, we'll let them be real values, like temperature, or weight. 

Slide 2.2.3 
Similarly, the output, yi, might be a boolean, a member of a discrete set, or a real value. For a particular 
problem, the yi will all be of a particular type. 

When yi is a boolean, or a member of a discrete set, we will call the problem a classification problem. 
When yi is real-valued, we call this a regression problem. 
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Slide 2.2.4 
Now, the goal of learning will be to find a hypothesis, h, that does a good job of describing the 
relationship between the inputs and the outputs. So, a part of the problem specification is capital H, the 
hypothesis class. H is the set of possible hypotheses that we want our learning algorithm to choose from. 
It might be something like decision trees with 6 nodes, or lines in two-dimensional space, or neural 
networks with 3 components. 

Slide 2.2.5 
So, now we have a bunch of data, and a class of possible answers (hypotheses) and we're supposed to 
return the best one. In order to do that, we need to know exactly what is meant by "best". 

Slide 2.2.6 
There are typically two components to the notion of best. The hypothesis should do a good job of 
describing the data and it shouldn't be too complicated. 

Slide 2.2.7 
Ideally, we would like to find a hypothesis h such that, for all data points i, h(xi) = yi. We will not always 
be able to (or maybe even want to) achieve this, so perhaps it will only be true for most of the data 
points, or the equality will be weakened into "not too far from". 

We can sometimes develop a measure of the "error" of a hypothesis to the data, written E(h, D). It might 
be the number of points that are miscategorized, for example. 
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Slide 2.2.8 
Another issue is the complexity of the hypothesis. We can measure the complexity of a decision tree by 
the number of nodes it has, or a line by how bendy it is. In general, we'll define a measure of the 
complexity of hypotheses in H, C(h). 

Slide 2.2.9 
Why do we care about hypothesis complexity? We have an intuitive sense that, all things being equal, 
simpler hyptheses are better. Why is that? There are lots of statistical and philosophical and information-
theoretic arguments in favor of simplicity. 

So, for now, let's just make recourse to William of Ockham, a 14th century Franciscan theologian, 
logician, and heretic. He is famous for "Ockham's Razor", or the principle of parsimony: "Non sunt 
multiplicanda entia praeter necessitatem." That is, "entities are not to be multiplied beyond necessity". 
People interpret this to mean that we should always adopt the simplest satisfactory hypothesis. 

Slide 2.2.10 
So, given a data set, D, a hypothesis class H, a goodness-of-fit function E, and a complexity measure C, 
our job will be to find the h in H that minimizes E(h, D) + alpha * C(h), where alpha is a number that we 
can vary to change how much we value fitting the data well versus having a complex hypothesis. 

We won't, in general, be able to do this efficiently, so, as usual, we'll have to make a lot of 
approximations and short-cuts. In fact, most learning algorithms aren't described exactly this way. But 
it's the underlying principle behind most of what we do. 

Slide 2.2.11 
Let's start with a very simple problem, in which all of the input features are Boolean (we'll represent 
them with 0's and 1's) and the desired output is also Boolean. 
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Slide 2.2.12 
Our hypothesis class will be conjunctions of the input features. 

Slide 2.2.13 
Here's an example data set. It is described using 4 features, which we'll call f1, f2, f3, and f4. 

Slide 2.2.14 
So, to understand the hypothesis space let's consider the hypothesis f1 ^ f3. It would be true on examples 

2 and 3, and false on all the rest. 

Slide 2.2.15 
We will measure the error of our hypothesis as the number of examples it gets wrong. It marks one 
negative example as positive, and two positives as negative. So, the error of the hypothesis f1 ^ f3 on this 

data set would be 3. 
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Slide 2.2.16 
Finally, we'll measure the complexity of our hypothesis by the number of features mentioned in the 
conjunction. So the hypothesis f1 ^ f3 has complexity 2. 

Furthermore, let's assume that alpha is set to be very small, so that our primary goal is to minimize error, 
but, errors being equal, we'd like to have the smallest conjunction. 

Slide 2.2.17 
There's now an obvious way to proceed. We could do a general-purpose search in the space of 
hypotheses, looking for the one that minimizes the cost function. In this case, that might work out okay, 
since the problem is very small. But in general, we'll want to work in domains with many more features 
and much more complex hypothesis spaces, making general-purpose search infeasible. 

Slide 2.2.18 
Instead, we'll be greedy! (When I talk about this and other algorithms being greedy, I'll mean something 
slightly different than what we meant when we talked about "greedy search". That was a particular 
instance of a more general idea of greedy algorithm. In greedy algorithms, in general, we build up a 
solution to a complex problem by adding the piece to our solution that looks like it will help the most, 
based on a partial solution we already have. This will not, typically, result in an optimal solution, but it 
usually works out reasonably well, and is the only plausible option in many cases (because trying out all 
possible solutions would be much too expensive)). 

Slide 2.2.19 
We'll start out with our hypothesis set to True (that's the empty conjunction). Usually, it will make some 
errors. Our goal will be to add as few elements to the conjuction as necessary to make no errors. 
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Slide 2.2.20 
Notice that, because we've started with the hypothesis equal to True, all of our errors are on negative 
examples. So, one greedy strategy would be to add the feature into our conjunction that rules out as 
many negative examples as possible without ruling out any positive examples. 

Slide 2.2.21 
Here is pseudo-code for our algorithm. We start with N equal to all the negative examples and the 
hypothesis equal to true. Then we loop, adding conjuncts that rule out negative examples, until N is 
empty. 

Slide 2.2.22 
Inside the loop, we consider every feature that would not rule out any positive examples. We pick the 
one that rules out the most negative examples (here's where our greed kicks in), conjoin it to h, and 
remove the examples that it excludes from N. 

Slide 2.2.23 
Let's simulate the algorithm on our data. We start with N equal to x1, x3, and x5, which are the negative 
examples. And h starts as True. We'll cover all the examples that the hypothesis makes true pink. 
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Slide 2.2.24 
Now, we consider all the the features that would not exclude any positive examples. Those are features f3 

and f4. f3 would exclude 1 negative example; f4 would exclude 2. So we pick f4. 

Slide 2.2.25 
Now we remove the examples from N that are ruled out by f4 and add f4 to h. 

Slide 2.2.26 
Now, based on the new N, n3 = 1 and n4 = 0. So we pick f3. 

Slide 2.2.27 
Because f3 rules out the last remaining negative example, we're done! 
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Slide 2.2.28 
What if we have this data set? In which we just made one negative example into a positive? 

Slide 2.2.29 
If we simulate the algorithm, we will arrive at the situation in which we still have elements in N, but 
there are no features left that do not exclude positive examples. So we're stuck. 

Slide 2.2.30 
What's going on? The problem is that this hypothesis class simply can't represent the data we have with 
no errors. So now we have a choice: we can accept the hypothesis we've got, or we can increase the size 
of the hypothesis class. In practice, which one you should do often depends on knowledge of the domain. 
But the fact is that pure conjunctions is a very limiting hypothesis class. So let's try something a little 
fancier. 

Slide 2.2.31 
You can kind of think of a conjunction as narrowing down on a small part of the space. And if all the 
positive examples can be corralled into one group this way, everything is fine. But for some concepts, it 
might be necessary to have multiple groups. 

This corresponds to a form of Boolean hypothesis that's fairly easy to think about: disjunctive normal 
form. Disjunctive normal form is kind of like CNF, only this time it has the form (A and B and C) or (D 
and E and F) 

As a hypothesis class, it's like finding multiple groups of positive examples within the negative space. 
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Slide 2.2.32 
So, let's look at our harder data set and see if we can find a good hypothesis in DNF. 

Slide 2.2.33 
It's pretty to see that one way to describe it is f3^f4 v f1^f2. Now let's look at an algorithm for finding it. 

Slide 2.2.34 
We'll let our hypothesis class be expressions in disjunctive normal form. What should our measure of 
complexity be? One reasonable choice is the total number of mentions of features (so f3^f4 v f1^f2 would 

have complexity 4). 

Slide 2.2.35 
Now, searching in this space would be much harder than searching in the space of conjunctions. So we'll 
use another greedy algorithm. 
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Slide 2.2.36 
We'll say a conjunction covers an example if all of the features mentioned in the conjunction are true in 
the example. 

Slide 2.2.37 
Here's pseudocode for the algorithm. It has two main loops. The inner loop constructs a conjunction 
(much like our previous algorithm). The outer loop constructs multiple conjunctions and disjoins them. 

The idea is that each disjunct will cover or account for some subset of the positive examples. So in the 
outer loop, we make a conjunction that includes some positive examples and no negative examples, and 
add it to our hypothesis. We keep doing that until no more positive examples remain to be covered. 

Slide 2.2.38 
We also haven't said how to pick which feature to add to r. It's trickier here, because we can't restrict our 
attention to features that allow us to cover all possible examples. Here's one heuristic for selecting which 
feature to add next. 

Slide 2.2.39 
Let vj be n+

j / n-
j, where n+

j is the total number of so-far uncovered positive examples that are covered by 

rule r ^ fj and n-
j is the total number of thus-far not-ruled-out negative examples that are covered by rule 

r ^ fj. The intuition here is that we'd like to add features that cover a lot of positive examples and exclude 

a lot of negative examples, because that's our overall goal. 

There's one additional problem about what to do when n- is 0. In that case, this is a really good feature, 
because it covers positives and doesn't admit any negatives. We'll prefer features with zero in the 
denominator over all others; if we have multiple such features, we'll prefer ones with bigger numerator. 
To make this fit easily into our framework, if the denominator is zero, we just return as a score 1 million 
times the numerator. 
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Slide 2.2.40 
Then we can replace this line in the code with one that says: Select the feature fj with the highest value of 

vj to add to r. And now we have a whole algorithm. 

Slide 2.2.41 
Let's simulate it on our data set. Here's a trace of what happens. It's important to remember that when we 
compute vj, we consider only positive and negative examples not covered so far. 

We start with h = false, and so our current hypothesis doesn't make any examples true. 

Slide 2.2.42 
After the first iteration of the inner loop, our hypothesis covers the examples shown in pink. There's still 
another positive example to get. 

Slide 2.2.43 
After another iteration, we add a new rule, which covers the example shown in blue. And we're done. 
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6.034 Notes: Section 2.3

Slide 2.3.1 
Once our learning algorithm has generated a hypothesis, we'd like to be able to estimate how well it is 
going to work out in the "real world". What is the real world? Well, we can't expect the hypothesis to 
perform well in every possible world; we can expect it to peform well in the world that generated the 
data that was used to train it. 

Slide 2.3.2 
Just by looking at the training data, we can't tell how well the hypothesis will work on unseen data. We 
have constructed the hypothesis so that it has zero error on the training data. But unless we're wildly 
optimistic, we can't expect to do so well on new data. 

Slide 2.3.3 
The only way to know how well the hypothesis will do on new data is to save some of the original data 
in a set called the "validation set" or the "test set". The data in the validation set are not used during 
training. Instead, they are "held out" until the hypothesis has been derived. Then, we can test the 
hypothesis on the validation set and see what percentage of the cases it gets wrong. This is called "test 
set error". 
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Slide 2.3.4 
Sometimes you'd like to know how well a particular learning algorithm is working, rather than 
evaluating a single hypothesis it may have produced. Running the algorithm just once and evaluating its 
hypothesis only gives you one sample of its behavior, and it might be hard to tell how well it really 
works from just one sample. 

If you have lots of data, you can divide it up into batches, and use half of your individual batches to train 
new hypotheses and the other half of them to evaluate the hypotheses. But you rarely have enough data 
to be able to do this. 

Slide 2.3.5 
One solution is called cross-validation. You divide your data up into some number (let's say 10 for now) 
of chunks. You start by feeding chunks 1 through 9 to your learner and evaluating the resulting 
hypothesis using chunk 10. 

Now, you feed all but chunk 9 into the learner and evaluate the resulting hypotheses on chunk 2. And so 
on. 

Slide 2.3.6 
At the end of this process, you will have run the learning algorithm 10 times, getting 10 different 
hypotheses, and tested each of the hypotheses on a different test set. You can now average the error 
results from each of these trials to get an aggregate picture of how well your learning algorithm 
performs. (For those of you who might be statistically sophisticated, you have to be careful with these 
statistics because the samples are not independent.) Remember that this is a method for comparing 
algorithms on a data set, not for evaluating the quality of a particular hypothesis. 

Slide 2.3.7 
One interesting thing to see is how well the learning process works as a function of how much data is 
available to it. I made a learning curve by secretly picking a target function to generate the data, drawing 
input points uniformly at random and generating their associated y using my secret function. First I 
generated 10 points and trained a hypothesis on them, then evaluated it. Then I did it for 20 points, and 
so on. 

This is the learning curve for a fairly simply function: f344 ^ f991 v f103 ^ f775, in a domain with 1000 

features. The x axis is the amount of training data. The y axis is the number of errors made by the 
resulting hypothesis, on a test set of data that is drawn uniformly at random, as a percentage of the total 
size of the test set. 

It takes suprisingly few samples before we find the correct hypothesis. With 1000 features, there are 
21000 possible examples. We are getting the correct hypothesis after seeing a tiny fraction of the whole 
space. 
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Slide 2.3.8 
Now, let's look at a much more complex target function. It's (f1^f2^f3^f4) v (f5^f6^f7^f8) v 

(f9^f10^f11^f12) v (f13^f14^f15^f16) v (f17^f18^f19^f20) v (f21^f22^f23^f24). It takes a lot more data to learn. 

Why is that? 

Slide 2.3.9 
First, it's important to remember that, at every point in the graph, the learning algorithm has found a 
hypothesis that gets all of the training data correct. 

Slide 2.3.10 
When we have just a little bit of data, there are many possible functions that agree with it all. How does 
our algorithm choose which answer to give? It tries to give a simple one. So, we would say that the 
algorithm has a "bias" in favor of simple hypotheses. 

Slide 2.3.11 
So, when the target hypothesis is simple, we discover it quickly (the other simple hypotheses are ruled 
out with just a little bit of data, because there are so few of them). 
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Slide 2.3.12 
If we thought our problems were going to have complex answers, then we might think about biasing our 
algorithm to prefer more complex answers. But then we start to see the wisdom of Ockham. There are 
lots more complex hypotheses than there are simple ones. So there will be huge numbers of complex 
hypotheses that agree with the data and no basis to choose among them, unless we know something 
about the domain that generated our data (maybe some features are thought, in advance, to be more 
likely to have an influence on the outcome, for example). 

Slide 2.3.13 
There is, in fact, a theorem in machine learning called the "No Free Lunch" theorem. It basically states 
that, unless you know something about the process that generated your data, any hypothesis that agrees 
with all the data you've seen so far is as good a guess as any other one. 

The picture will get a bit more complicated when we look at data that are noisy. 

Slide 2.3.14 
It is actually very rare to encounter a machine learning problem in which there is a deterministic function 
that accounts for y's dependence on x in all cases. It is much more typical to imagine that the process that 
generates the x's and y's is probabilistic, possibly corrupting measurements of the features, or simply 
sometimes making different decisions in the same circumstances. 

Slide 2.3.15 
We can easily handle noise in the framework we have introduced. We left the door open for it, so to 
speak, in our formulation of the problem we were trying to solve. We want to find a hypothesis h that 
minimizes error plus complexity. When there's noise, we'll have to accept that our hypothesis will 
probably have non-zero error on the training set; and we'll have to be very careful about how we weight 
these two criteria, as we will see. 
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Slide 2.3.16 
We can use our DNF learning algorithm almost unchanged. But, instead of requiring each rule to exclude 
all negative examples, and requiring the whole hypothesis to cover all positive examples, we will only 
require them to cover some percentage of them. Here is the pseudocode, with the changes highlighted in 
blue. 

Slide 2.3.17 
We also have to add further conditions for stopping both loops. If there is no feature that can be added 
that reduces the size of N, then the inner loop must terminate. If the inner loop cannot generate a rule that 
reduces the size of P, then the outer loop must terminate and fail. 

Slide 2.3.18 
Now we have a new parameter, epsilon, which is the percentage of examples we're allowed to get wrong. 
(Well, we'll actually get more wrong, because each disjunct is allowed to get epsilon percent of the 
negatives wrong). 

Slide 2.3.19 
Although it is not exactly equivalent to manipulating the alpha parameter in our ideal criterion, it is a 
way to trade off accuracy for complexity. The higher the epsilon, the simpler and more error-prone our 
hypothesis. 
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Slide 2.3.20 
If epsilon is small and the data is noisy, the algorithm may fail to find an acceptable hypothesis. 

Slide 2.3.21 
Let's see what happens in a moderately noisy domain. This curve shows the problem of learning our easy 
DNF function in a domain with 100 features, on a training set of size 100. The data has 10 percent noise, 
which means that, in 10 percent of the cases, we expect the output set to be the opposite of the one 
specified by the target function. The x axis is epsilon, ranging from 0 to 1. At setting 0, it is the same as 
our original algorithm. At setting 1, it's willing to make an arbitrary number of errors, and will always 
return the hypothesis False. The y axis is percentage error on a freshly drawn set of testing data. Note 
that, because there is 10 percent error in the data (training as well as testing), our very best hope is to 
generate a hypothesis that has 10 percent error on average on testing data. 

Slide 2.3.22 
We get the best performance for a value of epsilon that's between 0 and 1. What's the matter with setting 
it to some value near 0? We run into the problem of overfitting. In overfitting, we work very hard to 
reduce the error of our hypothesis on the training set. But we may have spent a lot of effort modeling the 
noise in the data, and perform poorly on the test set. That's what is happening here. It is said, in this case, 
that our algorithm has high variance. Another way to think about the problem is to see that if we get 
another noisy data set generated by the same target function, we are likely to get a wildly different 
answer. By turning epsilon up a bit, we generate simpler hypotheses that are not so susceptible to 
variations in the data set, and so can get better generalization performance. 

Slide 2.3.23 
Of course, turning epsilon up too high will keep us from building a hypothesis of sufficient complexity. 
Then we'd do poorly because we are unable to even represent the right answer. It is said, in this case, that 
our algorithm has high bias. 
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Slide 2.3.24 
It's also instructive to see how the complexity of the resulting hypothesis varies as a function of epsilon. 
When epsilon is 0, we are asking for a hypothesis with zero error on the training set. We are able to find 
one, but it's very complex (31 literals). This is clearly a high variance situation; that hypothesis is 
completely influenced by the particular training set and would change radically on a newly drawn 
training set (and therefore, have high error on a testing set, as we saw on the previous slide). 

Slide 2.3.25 
As epsilon increases, we rapidly go down to a complexity of 1, which is incapable of representing the 
target hypothesis. The low-point in the error curve was at epsilon = 0.2, which has a complexity of 4 
here. And it's no coincidence that the target concept also has a complexity of 4. 

Slide 2.3.26 
This problem is called the bias/variance trade-off. Because this is such an important idea in machine 
learning, let's look at it one more time in the context of our old pictures of dots on the plane. 

Slide 2.3.27 
Here's some noisy data. 

If we separate it with a line, we have low complexity, but lots of error. 
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Slide 2.3.28 
If we separate it with a squiggly snake, we can reduce the error but add a lot of complexity. 

Slide 2.3.29 
So, what, exactly, is so bad about complexity? Well, let's draw a bunch more points from the same 
underlying distribution and add them to our data set. 

Slide 2.3.30 
We wouldn't need to change our line hypothesis very much to do our best to accomodate them. 

Slide 2.3.31 
But we'd have to change the snake hypothesis radically. This is what it means to have high variance. 

The line, although it was making mistakes on the original data set, performs better on unseen data. 
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Slide 2.3.32 
In practice, it is common to allow hypotheses of increased complexity as the amount of available training 
data increases. So, in this situation, we might feel justified in choosing a moderately complex hypothesis. 

Slide 2.3.33 
So, given a data set, how should we choose epsilon? This is where cross-validation can come in handy. 
You select a number of different values of epsilon, and use cross-validation to estimate the error when 
using that epsilon. Then, you pick the epsilon value with the least estimated error, and train your learning 
algorithm with all the available data using that value of epsilon. The resulting hypothesis is probably the 
best you can do (given what you know). 

Slide 2.3.34 
So, is this algorithm actually good for anything? Yes. There are lots of domains that can be encoded as 
vectors of binary features with a binary classification. Here are some examples. 

Slide 2.3.35 
Congressional voting: given a congressperson's voting record, where the features are the individual's 
votes on various bills, can you predict whether they are a republican or democrat? 
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Slide 2.3.36 
Gene splicing: given a sequence of bases (A, C, G, or T), predict whether the mid-point is a splice 
junction between a coding segment of DNA and a non-coding segment. In order to apply our algorithms 
to this problem, we would have to change the representation somewhat. It would be easy to take each 
base and represent it as two binary values; A is 00, C is 01, G is 10 and T is 11. Even though it seems 
inefficient, for learning purposes, it is often better to represent discrete elements using a unary code; so A 
would be 0001, C would be 0010, G would be 0100 and T would be 1000. 

Slide 2.3.37 
Spam filtering: is this email message spam? Represent a document using a really big feature space, with 
one feature for each possible word in the dictionary (leaving out some very common ones, like "a" and 
"the"). The feature for a word has value 1 if that word exists in the document and 0 otherwise. 

Slide 2.3.38 
Marketing: is this grocery-store customer likely to buy beer? Represent a person's buying history using a 
big feature space, with one feature for each product in the supermarket. The feature for a product has 
value 1 if the person has ever bought that product and 0 otherwise. 

Slide 2.3.39 
Just for fun, we ran the DNF learning algorithm on the congressional voting data. A lot of the records 
had missing data (those congress folks are always out in the hallways talking instead of in there voting); 
we just deleted those records (though in a machine learning class we would study better ways of 
handling missing data items). There were 232 training examples, each of which had 15 features. The 
features were the individuals' votes on these bills (unfortunately, we don't know any details about the 
bills, but the names are evocative). 
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Slide 2.3.40 
We are trying to predict whether a person is a Republican, based on their voting history during part of 
1984. Here is a plot of the training set error as a function of epsilon. What I should really do is cross-
validation, but instead I just ran the algorithm on the whole data set and I'm plotting the error on the 
training set. 

Something sort of weird is going on. Training set error should get smaller as epsilon decreases. Why do 
we have it going up for epsilon equal zero? It's because of the greediness of our algorithm. We're not 
actually getting the best hypothesis in that case. 

Slide 2.3.41 
Here's the hypothesis we get at this point. It's kind of complicated (but mentions a lot of Republican 
things, like aid to the Nicaraguan contras and the mx-missile). 

Slide 2.3.42 
Here's a simpler hypothesis (with slightly worse error). 

Slide 2.3.43 
And here's the best hypothesis of complexity 1 for predicting whether someone is a Republican: did they 
vote "yes" for the MX missile? 

And, just because you're all too young to remember this, a little history. The MX missile, also called the 
"Peacekeeper" was our last big nuclear missile project. It's 71 feet long, with 10 warheads, and launched 
from trains. It was politically very contentious. Congress killed it at least twice before it was finally 
approved. 
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6.034 Notes: Section 2.4

Slide 2.4.1 
The learning algorithm for DNF that we saw last time is a bit complicated and can be inefficient. It's 
also not clear that we're making good decisions about which attributes to add to a rule, especially when 
there's noise. 

So now we're going to look at an algorithm for learning decision trees. We'll be changing our 
hypothesis class (sort of), our bias, and our algorithm. We'll continue to assume, for now, that the input 
features and the output class are boolean. We'll see later that this algorithm can be applied much more 
broadly. 

Slide 2.4.2 
Our hypothesis class is going to be decision trees. A decision tree is a tree (big surprise!). At each 
internal (non-leaf) node, there is the name of a feature. There are two arcs coming out of each node, 
labeled 0 and 1, standing for the two possible values that the feature can take on. 

Leaf nodes are labeled with decisions, or outputs. Since our y's are Boolean, the leaves are labeled with 0 
or 1. 

Slide 2.4.3 
Trees represent Boolean functions from x's (vectors of feature values) to Booleans. To compute the 
output for a given input vector xi, we start at the root of the tree. We look at the feature there, let's say it's 
feature j, and then look to see what the value of xi

j is. Then we go down the arc corresponding to that 

value. If we arrive at another internal node, we look up that feature value, follow the correct arc, and so 
on. When we arrive at a leaf node, we take the label we find there and generate that as an output. 

So, in this example, input [0 1 1 0] would generate an output of 0 (because the third element of the input 
has value 1 and the first has value 0, which takes to a leaf labeled 0). 

file:///C|/Documents%20and%20Settings/Administrator/My%...ching/6.034/04/lessons/Chapter2/mlintro-handout-07.html (34 of 55)2/7/2007 9:22:36 PM



6.034 Artificial Intelligence. Copyright © 2006 by Massachusetts Institute of Technology. All rights reserved

Slide 2.4.4 
Decision trees are a way of writing down Boolean expressions. To convert a tree into an expression, you 
can make each branch of the tree with a 1 at the leaf node into a conjunction, describing the condition 
that had to hold of the input in order for you to have gotten to that leaf of the tree. Then, you take this 
collection of expressions (one for each leaf) and disjoin them. 

So, our example tree describes the boolean function not f3 and f2 or f3 and f1 and not f2. 

Slide 2.4.5 
If we allow negations of primitive features in DNF, then both DNF and decision trees are capable of 
representing any boolean function. Why, then, should we bother to change representations in this way? 
The answer is that we're going to define our bias in a way that is natural for trees, and use an algorithm 
that is tailored to learning functions in the tree representation. 

Slide 2.4.6 
Application of Ockham's razor will lead us to prefer trees that are small, measured by the number of 
nodes. As before, it will be computationally intractable to find the minimum-sized tree that satisfies our 
error criteria. So, as before, we will be greedy, growing the tree in a way that seems like it will make it 
best on each step. 

We'll consider a couple of methods for making sure that our resulting trees are not too large, so we can 
guard against overfitting. 

Slide 2.4.7 
It's interesting to see that a bias for small trees is different from a bias for small DNF expressions. 
Consider this tree. It corresponds to a very complex function in DNF. 
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Slide 2.4.8 
But here's a case with a very simple DNF expression that requires a large tree to represent it. There's no 
particular reason to prefer trees over DNF or DNF over trees as a hypothesis class. But the tree-growing 
algorithm is simple and elegant, so we'll study it. 

Slide 2.4.9 
The idea of learning decision trees and the algorithm for doing so was, interestingly, developed 
independently by researchers in statistics and researchers in AI at about the same time around 1980. 

Slide 2.4.10 
We will build the tree from the top down. Here is pseudocode for the algorithm. It will take as input a 
data set, and return a tree. 

Slide 2.4.11 
We first test to see if all the data elements have the same y value. If so, we simply make a leaf node with 
that y value and we're done. This is the base case of our recursive algorithm. 
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Slide 2.4.12 
If we have a mixture of different y values, we choose a feature to use to make a new internal node. Then 
we divide the data into two sets, those for which the value of the feature is 0 and those for which the 
value is 1. Finally, we call the algorithm recursively on each of these data sets. We use the selected 
feature and the two recursively created subtrees to build our new internal node. 

Slide 2.4.13 
So, how should we choose a feature to split the data? Our goal, in building this tree, is to separate the 
negative instances from the positive instances with the fewest possible tests. So, for instance, if there's a 
feature we could pick that has value 0 for all the positive instances and 1 for all the negative instances, 
then we'd be delighted, because that would be the last split we'd have to make. On the other hand, a 
feature that divides the data into two groups that have the same proportion of positive and negative 
instances as we started with wouldn't seem to have helped much. 

Slide 2.4.14 
In this example, it looks like the split based on f7 will be more helpful. To formalize that intuition, we 

need to develop a measure of the degree of uniformity of the subsets of the data we'd get by splitting on a 
feature. 

Slide 2.4.15 
We'll start by looking at a standard measure of disorder, used in physics and information theory, called 
entropy. We'll just consider it in the binary case, for now. Let p be the proportion of positive examples 
in a data set (that is, the number of positive examples divided by the total number of examples). Then the 
entropy of that data set is 

   - p log2 p - (1 - p) log2 (1 - p)
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Slide 2.4.16 
Here's a plot of the entropy as a function of p. When p is 0 or 1, then the entropy is 0. We have to be a 
little bit careful here. When p is 1, then 1 log 1 is clearly 0. But what about when p is 0? Log 0 is 
negative infinity. But 0 wins the battle, so 0 log 0 is also 0. 

So, when all the elements of the set have the same value, either 0 or 1, then the entropy is 0. There is no 
disorder (unlike in my office!). 

The entropy function is maximized when p = 0.5. When p is one half, the set is as disordered as it can 
be. There's no basis for guessing what the answer might be. 

Slide 2.4.17 
When we split the data on feature j, we get two data sets. We'll call the set of examples for which feature 
j has value 1 D+

j and those for which j has value 0 D-
j. 

Slide 2.4.18 
We can compute the entropy for each of these subsets. For some crazy reason, people usually use the 
letter H to stand for entropy. We'll follow suit. 

Slide 2.4.19 
Now, we have to figure out how to combine these two entropy values into a measure of how good 
splitting on feature j is. We could just add them together, or average them. But what if have this 
situation, in which there's one positive example in one data set and 100 each of positive and negative 
examples in the other? It doesn't really seem like we've done much good with this split, but if we 
averaged the entropies, we'd get a value of 1/4. 

So, to keep things fair, we'll use a weighted average to combine the entropies of the two sets. Let pj be 

the proportion of examples in the data set D for which feature j has value 1. We'll compute a weighted 
average entropy for splitting on feature j as AE(j) = pj H(D+

j) + (1 - pj)H(D-
j) 
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Slide 2.4.20 
So, in this example, we can see that the split on f7 is much more useful, as reflected in the average 

entropy of its children. 

Slide 2.4.21 
Going back to our algorithm, then, we'll pick the feature at every step that minimizes the weighted 
average entropy of the children. 

Slide 2.4.22 
As usual, when there is noise in the data, it's easy to overfit. We could conceivably grow the tree down to 
the point where there's a single data point in each leaf node. (Or maybe not: in fact, if have two data 
points with the same x values but different y values, our current algorithm will never terminate, which is 
certainly a problem). So, at the very least, we have to include a test to be sure that there's a split that 
makes both of the data subsets non-empty. If there is not, we have no choice but to stop and make a leaf 
node. 

Slide 2.4.23 
What should we do if we have to stop and make a leaf node when the data points at that node have 
different y values? Choosing the majority y value is the best strategy. If there are equal numbers of 
positive and negative points here, then you can just pick a y arbitrarily. 
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Slide 2.4.24 
But growing the tree as far down as we can will often result in overfitting. 

Slide 2.4.25 
The simplest solution is to change the test on the base case to be a threshold on the entropy. If the 
entropy is below some value epsilon, we decide that this leaf is close enough to pure. 

Slide 2.4.26 
Another simple solution is to have a threshold on the size of your leaves; if the data set at some leaf has 
fewer than that number of elements, then don't split it further. 

Slide 2.4.27 
Another possible method is to only split if the split represents a real improvement. We can compare the 
entropy at the current node to the average entropy for the best attribute. If the entropy is not significantly 
decreased, then we could just give up. 
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Slide 2.4.28 
Let's see how our tree-learning algorithm behaves on the example we used to demonstrate the DNF-
learning algorithm. Our data set has a starting entropy of .92. Then, we can compute, for each feature, 
what the average entropy of the children would be if we were to split on that feature. 

In this case, the best feature to split on is f3. 

Slide 2.4.29 
So, if we make that split, we have these two data sets. The one on the left has only a single output (in 
fact, only a single point). 

Slide 2.4.30 
So we make it into a leaf with output 0 and consider splitting the data set in the right child. 

Slide 2.4.31 
The average entropies of the possible splits are shown here. Features 1 and 2 are equally useful, and 
feature 4 is basically no help at all. 
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Slide 2.4.32 
So, we decide, arbitrarily, to split on feature 1, yielding these sub-problems. All of the examples in the 
right-hand child have the same output. 

Slide 2.4.33 
So we can turn it into a leaf with output 1. 

In the left child, feature 2 will be the most useful. 

Slide 2.4.34 
So we split on it, and now both children are homogeneous (all data points have the same output). 

Slide 2.4.35 
So we make the leaves and we're done! 
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Slide 2.4.36 
One class of functions that often haunts us in machine learning are those that are based on the "exclusive 
OR". Exclusive OR is the two-input boolean function that has value 1 if one input has value 1 and the 
other has value 0. If both inputs are 1 or both are 0, then the output is 0. This function is hard to deal 
with, because neither input feature is, by itself, detectably related to the output. So, local methods that try 
to add one feature at a time can be easily misled by xor. 

Slide 2.4.37 
Let's look at a somewhat tricky data set. The data set has entropy .92. Furthermore, no matter what 
attribute we split on, the average entropy is .92. If we were using the stopping criterion that says we 
should stop when there is no split that improves the average entropy, we'd stop now. 

Slide 2.4.38 
But let's go ahead and split on feature 1. Now, if we look at the left-hand data set, we'll see that feature 2 
will have an average entropy of 0. 

Slide 2.4.39 
So we split on it, and get homogenous children, 

file:///C|/Documents%20and%20Settings/Administrator/My%...ching/6.034/04/lessons/Chapter2/mlintro-handout-07.html (43 of 55)2/7/2007 9:22:36 PM



6.034 Artificial Intelligence. Copyright © 2006 by Massachusetts Institute of Technology. All rights reserved

Slide 2.4.40 
Which we can replace with leaves. 

Now, it's also easy to see that feature 2 will again be useful here, 

Slide 2.4.41 
And we go straight to leaves on this side. 

So we can see that, although no single feature could reduce the average entropy of the child data sets, 
features 1 and 2 were useful in combination. 

Slide 2.4.42 
Most real decision-tree building systems avoid this problem by building the tree down significantly 
deeper than will probably be useful (using something like an entropy cut-off or even getting down to a 
single data-point per leaf). Then, they prune the tree, using cross-validation to decide what an 
appropriate pruning depth is. 

Slide 2.4.43 
We ran a simple version of the tree-learning program on the congressional voting database. Instead of 
pruning, it has a parameter on the minimum leaf size. If it reaches a node with fewer than that number of 
examples, it stops and makes a leaf with the majority output. 

Here's the tree we get when the minimum leaf size of 20. This problem is pretty easy, so this small tree 
works very well. If we grow bigger trees, we don't get any real increase in accuracy. 
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Slide 2.4.44 
Because decision tree learning is easy to implement and relatively computationally efficient, and 
especially because the hypotheses are easily understandable by humans, this technology is very widely 
used. 

The field of data mining is the application of learning algorithms to problems of interest in many 
industries. Decision trees is one of the principle methods used in data mining. 

In the next few sections, we'll see how to broaden the applicability of this and other algorithms to 
domains with much richer kinds of inputs and outputs. 

6.034 Notes: Section 2.5

Slide 2.5.1 
Let's look at one more algorithm, which is called naive Bayes. It's named after the Reverend Thomas 
Bayes, who developed a very important theory of probabilistic reasoning. 

Slide 2.5.2 
It's widely used in applications with lots of features. It was derived using a somewhat different set of 
justifications than the ones we've given you. We'll start by going through the algorithm, and at the end I'll 
go through its probabilistic background. Don't worry if you don't follow it exactly. It's just motivational, 
but it should make sense to anyone who has studied basic probability. 
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Slide 2.5.3 
Let's start by looking at an example data set. We're going to try to characterize, for each feature 
individually, how it is related to the class of an example. 

First, we look at the positive examples, and count up what fraction of them have feature 1 on and what 
fraction have feature 1 off. We'll call these fractions R1(1, 1) and R1(0,1). We can see here that most 

positive examples have this feature 1 off. 

Slide 2.5.4 
Now, we look at the negative examples, and figure out what fraction of negative examples have feature 1 
on and what fraction have it off. We call these fractions R1(1, 0) and R1(0, 0). Here we see that all 
negative examples have this feature on. 

Slide 2.5.5 
We can compute these values, as shown here, for each of the other features, as well. 

Slide 2.5.6 
These R values actually represent our hypothesis in a way we'll see more clearly later. But that means 
that, given a new input x, we can use the R values to compute an output value Y. 
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Slide 2.5.7 
Imagine we get a new x = <0, 0, 1, 1>. We start out by computing a "score" for this example being a 
positive example. We do that by multiplying the positive R values, one for each feature. So, our x has 
feature 1 equal to 0, so we use R1 of 0, 1. It has feature 2 equal to zero, so we use R2 of 0, 1. It has 

feature 3 equal to 1, so we use R3 of 1, 1. And so on. I've shown the feature values in blue to make it 

clear which arguments to the R functions they're responsible for. Similarly, I've shown the 1's that come 
from the fact that we're computing the positive score in green. 

Each of the factors in the score represents the degree to which this feature tends to have this value in 
positive examples. Multiplied all together, they give us a measure of how likely it is that this example is 
positive. 

Slide 2.5.8 
We can do the same thing to compute a score for x being a negative example. Something pretty radical 
happens here, because we have R1 of 0, 0 equal to 0. We've never seen a negative example with feature 1 

off, so we have concluded, essentially, that it's impossible for that to happen. Thus, because our x has 
feature 1 equal to 0, we think it's impossible for x to be a negative example. 

Slide 2.5.9 
Finally, we compare score 1 to score 0, and generate output 1 because score 1 is larger than score 0. 

Slide 2.5.10 
Here's the learning algorithm written out just a little bit more generally. To compute Rj of 1, 1, we just 

count, in our data set, how many examples there have been in which feature j has had value 1 and the 
output was also 1, and divide that by the total number of samples with output 1. 
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Slide 2.5.11 
Now, Rj of 0, 1 is just 1 minus Rj of 1, 1. 

Slide 2.5.12 
Similarly, Rj of 1, 0 is the number of examples in which feature j had value 1 and the output was 0, 

divided the total number of examples with output 0. And Rj of 0, 0 is just 1 minus Rj of 1, 0. 

Slide 2.5.13 
Now, given a new example, x, let the score for class 1, S(1), be the product, over all j, of Rj of 1,1 if xj = 

1 and Rj of 0, 1 otherwise. 

Slide 2.5.14 
Similarly, S(0) is the product, over all j, of Rj of 1, 0 if xj = 1 and Rj of 0,0 otherwise. 
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Slide 2.5.15 
If S(1) is greater than S(0), then we'll predict that Y = 1, else 0. 

Slide 2.5.16 
We can run into problems of numerical precision in our calculations if we multiply lots of probabilities 
together, because the numbers will rapidly get very small. One standard way to deal with this is to take 
logs everywhere. Now, we'll output 1 if the log of the score for 1 is greater than the log of score 0. And 
the log of a product is the sum of the logs of the factors. 

Slide 2.5.17 
In our example, we saw that if we had never seen a feature take value 1 in a positive example, our 
estimate for how likely that would be to happen in the future was 0. That seems pretty radical, especially 
when we only have had a few examples to learn from. There's a standard hack to fix this problem, called 
the "Laplace correction". When counting up events, we add a 1 to the numerator and a 2 to the 
denominator. 

If we've never seen any positive instances, for example, our R (1,1) values would be 1/2, which seems 
sort of reasonable in the absence of any information. And if we see lots and lots of examples, this 1 and 2 
will be washed out, and we'll converge to the same estimate that we would have gotten without the 
correction. 

There's a beautiful probabilistic justification for what looks like an obvious hack. But, sadly, it's beyond 
the scope of this class. 

Slide 2.5.18 
Here's what happens to our original example if we use the Laplace correction. Notably, R1 of 0, 0 is now 

1/7 instead of 0, which is less dramatic. 
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Slide 2.5.19 
And so, when it comes time to make a prediction, the score for answer 0 is no longer 0. We think it's 
possible, but unlikely, that this example is negative. So we still predict class 1. 

Slide 2.5.20 
What's the story of this algorithm in terms of hypothesis space? We've fixed the spaces of hypotheses to 
have the form shown here. This is a very restricted form. But it is still a big (infinite, in fact) hypothesis 
space, because we have to pick the actual values of the coefficients alphaj and betaj for all j. 

Slide 2.5.21 
All of our bias is in the form of the hypothesis. We've restricted it significantly, so we would now like to 
choose the alpha's and beta's in such a way as to minimize the error on the training set. For somewhat 
subtle technical reasons (ask me and I'll tell you), our choice of the R scores for the alpha's and beta's 
doesn't exactly minimize error on the training set. But it usually works pretty well. 

The main reason we like this algorithm is that it's easy to train. One pass through the data and we can 
compute all the parameters. It's especially useful in things like text categorization, where there are huge 
numbers of attributes and we can't possibly look at them many times. 

Slide 2.5.22 
One possible concern about this algorithm is that it's hard to interpret the hypotheses you get back. With 
DNF or decision trees, it's easy for a human to understand what features are playing an important role, 
for example. 

In naive Bayes, all the features are playing some role in the categorization. You can think of each one as 
casting a weighted vote in favor an answer of 1 versus 0. The weight of each feature's vote is this 
expression. The absolute value of this weight is a good indication of how important a feature is, and its 
sign tells us whether that feature is indicative of output 1 (when it's positive) or output 0 (when it's 
negative). 
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Slide 2.5.23 
This algorithm makes a fundamental assumption that we can characterize the influence of each feature 
on the class independently, and then combine them through multiplication. This assumption isn't always 
justified. We'll illustrate this using our old nemesis, exclusive or. Here's the data set we used before. 

Slide 2.5.24 
Here are the R values obtained via counting and the Laplace correction. They're all equal to 1/2, because 
no feature individually gives information about whether the example is positive or negative. 

Slide 2.5.25 
Sure enough, when we compute the scores for any new example, we get the same result, giving us no 
basis at all for predicting the output. 

Slide 2.5.26 
Now we show the results of applying naive Bayes to the congressional voting domain. In this case, we 
might expect the independence assumption to be reasonably well satisfied (a congressperson probably 
doesn't decide on groups of votes together, unless there are deals being made). 

file:///C|/Documents%20and%20Settings/Administrator/My%...ching/6.034/04/lessons/Chapter2/mlintro-handout-07.html (51 of 55)2/7/2007 9:22:36 PM



6.034 Artificial Intelligence. Copyright © 2006 by Massachusetts Institute of Technology. All rights reserved

Slide 2.5.27 
Using cross-validation, we determined that the accuracy of hypotheses generated by naive Bayes was 
approximately 0.91. This is not as good as that of decision trees, which had an accuracy of about 0.95. 
This result is not too surprising: decision trees can express more complex hypotheses that consider 
combinations of attributes. 

Slide 2.5.28 
This domain is small enough that the efficiency of naive Bayes doesn't really matter. So we would prefer 
to use trees or DNF on this problem. 

Slide 2.5.29 
It's interesting to look at the weights found for the various attributes. Here, I've sorted the attributes 
according to magnitude of the weight assigned to them by naive Bayes. The positive ones (colored black) 
vote in favor of the output being 1 (republican); the negative ones (colored red) vote against the the 
output being 1 (and therefore in favor of democrat). 

The results are consistent with the answers we've gotten from the other algorithms. The most diagnostic 
single issue seems to be voting on whether physician fees should be frozen; that is a strong indicator of 
being a democrat. The strongest indicators of being republican are accepting the budget, aid to the 
contras, and support of the mx missile. 

Slide 2.5.30 
Now we'll look briefly at the probabilistic justification for the algorithm. If you don't follow it, don't 
worry. But if you've studied probability before, this ought to provide some useful intuition. 
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Slide 2.5.31 
One way to think about the problem of deciding what class a new item belongs to is to think of the 
features and the output as random variables. If we knew Pr(Y = 1 | f1 ... fn), then when we got a new 

example, we could compute the probability that it had a Y value of 1, and generate the answer 1 if the 
probability was over 0.5. So, we're going to concentrate on coming up with a way to estimate this 
probability. 

Slide 2.5.32 
Bayes' rule gives us a way to take the conditional probability Pr(A|B) and express it in terms of Pr(B|A) 
and the marginals Pr(A) and Pr(B). 

Slide 2.5.33 
Applying it to our problem, we get Pr(Y = 1 | f1 ... fn) = Pr(f1 .. fn | Y = 1) Pr(Y = 1) / Pr(f1 .. fn) 

Slide 2.5.34 
Since the denominator is independent of Y, we can ignore it in figuring out whether Pr(Y = 1 | f1 ... fn) is 

greater than Pr(Y = 0 | f1 ... fn). 
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Slide 2.5.35 
The term Pr(Y = 1) is often called the prior. It's a way to build into our decision-making a previous 
belief about the proportion of things that are positive. For now, we'll just assume that it's 0.5 for both 
positive and negative classes, and ignore it. 

Slide 2.5.36 
This will allow us to concentrate on Pr(f1 ... fn | Y = 1). 

Slide 2.5.37 
The algorithm is called naive Bayes because it makes a big assumption, which is that it can be broken 
down into a product like this. A probabilist would say that we are assuming that the features are 
conditionally independent given the class. 

So, we're assuming that Pr(f1 .. fn | Y = 1) is the product of all the individual conditional probabilities, Pr

(fj | Y = 1). 

Slide 2.5.38 
Here is our same learning algorithm (without the Laplace correction, for simplicity), expressed in 
probabilistic terms. 

We can think of the R values as estimates of the underlying conditional probabilities, based on the 
training set as a statistical sample drawn from those distributions. 
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Slide 2.5.39 
And here's the prediction algorithm, just written out using probabilistic notation. The S is also an 
estimated probability. So we predict output 1 just when we think it's more likely that our new x would 
have come from class 1 than from class 0. 

Now, we'll move on to considering the situation in which the inputs and outputs of the learning process 
can be real-valued. 
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