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6.034 Notes: Section 8.1

Slide 8.1.1 
A sentence written in conjunctive normal form looks like ((A or B or not C) and (B or D) and (not A) 
and (B or C)). 

Slide 8.1.2 
Its outermost structure is a conjunction. It's a conjunction of multiple units. These units are called 
"clauses." 

Slide 8.1.3 
A clause is the disjunction of many things. The units that make up a clause are called literals. 
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Slide 8.1.4 
And a literal is either a variable or the negation of a variable. 

Slide 8.1.5 
So you get an expression where the negations are pushed in as tightly as possible, then you have ors, then 
you have ands. This is like saying that every assignment has to meet each of a set of requirements. You 
can think of each clause as a requirement. So somehow, the first clause has to be satisfied, and it has 
different ways that it can be satisfied, and the second one has to be satisfied, and the third one has to be 
satisfied, and so on. 

Slide 8.1.6 
You can take any sentence in propositional logic and write it in conjunctive normal form. 

Slide 8.1.7 
Here's the procedure for converting sentences to conjunctive normal form. 
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Slide 8.1.8 
The first step is to eliminate single and double arrows using their definitions. 

Slide 8.1.9 
The next step is to drive in negation. We do it using DeMorgan's Laws. You might have seen them in a 
digital logic class. Not (phi or psi) is equivalent to (not phi and not psi). And, Not (phi and psi) is 
equivalent to (not phi or not psi). So if you have a negation on the outside, you can push it in and change 
the connective from and to or, or from or to and. 

Slide 8.1.10 
The third step is to distribute or over and. That is, if we have (A or (B and C)) we can rewrite it as (A or 
B) and (A or C). You can prove to yourself, using the method of truth tables, that the distribution rule 
(and DeMorgan's laws) are valid. 

Slide 8.1.11 
One problem with conjunctive normal form is that, although you can convert any sentence to conjunctive 
normal form, you might do it at the price of an exponential increase in the size of the expression. 
Because if you have A and B and C OR D and E and F, you end up making the cross- product of all of 
those things. 

For now, we'll think about satisfiability problems, which are generally fairly efficiently converted into 
CNF. 
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Slide 8.1.12 
Here's an example of converting a sentence to CNF. 

Slide 8.1.13 
First we get rid of both arrows, using the rule that says "A implies B" is equivalent to "not A or B". 

Slide 8.1.14 
Then we drive in the negation using deMorgan's law. 

Slide 8.1.15 
Finally, we distribute or over and to get the final CNF expression. 
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6.034 Notes: Section 8.2

Slide 8.2.1 
We have talked a little bit about proof, with the idea that you write down some axioms -- statements 
that you're given -- and then you try to derive something from them. And we've all had practice doing 
that in high school geometry and we've talked a little bit about natural deduction. So what we're going 
to talk about now is resolution. Which is the way that pretty much every modern automated theorem-
prover is implemented. It seems to be the best way for computers to think about proving things. 

Slide 8.2.2 
So here's the resolution inference rule, in the propositional case. It says that if you know "alpha or beta", 
and you know "not beta or gamma", then you're allowed to conclude "alpha or gamma". 

Remember from when we looked at inference rules before that these Greek letters are meta-variables. 
They can stand for big chunks of propositional logic, as long as the parts match up in the right way. So if 
you know something of the form "alpha or beta", and you also know that "not beta or gamma", then you 
can conclude "alpha or gamma". 

Slide 8.2.3 
It turns out that this one rule is all you need to prove anything in propositional logic. At least, to prove 
that a set of sentences is not satisfiable. So, let's see how this is going to work. There's a proof strategy 
called resolution refutation, with three steps. It goes like this. 
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Slide 8.2.4 
First, you convert all of your sentences to conjunctive normal form. You already know how to do this! 
Then, you write each clause down as a premise or given in your proof. 

Slide 8.2.5 
Then, you negate the desired conclusion -- so you have to say what you're trying to prove, but what we're 
going to do is essentially a proof by contradiction. You've all seen the strategy of proof by contradiction 
(or, if we're being fancy and Latin, reductio ad absurdum). You assert that the thing that you're trying to 
prove is false, and then you try to derive a contradiction. That's what we're going to do. So you negate 
the desired conclusion and convert that to CNF. And you add each of these clauses as a premise of your 
proof, as well. 

Slide 8.2.6 
Now we apply the resolution rule until one of two things happens. We might derive "false", which means 
that the conclusion did, in fact, follow from the things that we had assumed. If you assert that the 
negation of the thing that you're interested in is true, and then you prove for a while and you manage to 
prove false, then you've succeeded in a proof by contradiction of the thing that you were trying to prove 
in the first place. Or, we might find ourselves in a situation where we can't apply the resolution rule any 
more, but we still haven't managed to derive false. 

Slide 8.2.7 
What if you can't apply the resolution rule anymore? Is there anything in particular that you can 
conclude? In fact, you can conclude that the thing that you were trying to prove can't be proved. So 
resolution refutation for propositional logic is a complete proof procedure. If the thing that you're trying 
to prove is, in fact, entailed by the things that you've assumed, then you can prove it using resolution 
refutation. It's guaranteed that you'll always either prove false, or run out of possible steps. It's complete, 
because it always generates an answer. Furthermore, the process is sound: the answer is always correct. 
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Slide 8.2.8 
So let's just do a proof. Let's say I'm given "P or Q", "P implies R" and "Q implies R". I would like to 
conclude R from these three axioms. I'll use the word "axiom" just to mean things that are given to me 
right at the moment. 

Slide 8.2.9 
We start by converting this first sentence into conjunctive normal form. We don't actually have to do 
anything. It's already in the right form. 

Slide 8.2.10 
Now, "P implies R" turns into "not P or R". 

Slide 8.2.11 
Similarly, "Q implies R" turns into "not Q or R" 
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Slide 8.2.12 
Now we want to add one more thing to our list of given statements. What's it going to be? Not R. Right? 
We're going to assert the negation of the thing we're trying to prove. We'd like to prove that R follows 
from these things. But what we're going to do instead is say not R, and now we're trying to prove false. 
And if we manage to prove false, then we will have a proof that R is entailed by the assumptions. 

Slide 8.2.13 
We'll draw a blue line just to divide the assumptions from the proof steps. And now, we look for 
opportunities to apply the resolution rule. You can do it in any order you like (though some orders of 
application will result in much shorter proofs than others). 

Slide 8.2.14 
We can apply resolution to lines 1 and 2, and get "Q or R" by resolving away P. 

Slide 8.2.15 
And we can take lines 2 and 4, resolve away R, and get "not P." 
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Slide 8.2.16 
Similarly, we can take lines 3 and 4, resolve away R, and get "not Q". 

Slide 8.2.17 
By resolving away Q in lines 5 and 7, we get R. 

Slide 8.2.18 
And finally, resolving away R in lines 4 and 8, we get the empty clause, which is false. We'll often draw 
this little black box to indicate that we've reached the desired contradiction. 

Slide 8.2.19 
How did I do this last resolution? Let's see how the resolution rule is applied to lines 4 and 8. The way to 
look at it is that R is really "false or R", and that "not R" is really "not R or false". (Of course, the order 
of the disjuncts is irrelevant, because disjunction is commutative). So, now we resolve away R, getting 
"false or false", which is false. 
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Slide 8.2.20 
One of these steps is unnecessary. Which one? Line 6. It's a perfectly good proof step, but it doesn't 
contribute to the final conclusion, so we could have omitted it. 

Slide 8.2.21 
Here's a question. Does "P and not P" entail Z? 

It does, and it's easy to prove using resolution refutation. 

Slide 8.2.22 
We start by writing down the assumptions and the negation of the conclusion. 

Slide 8.2.23 
Then, we can resolve away P in lines 1 and 2, getting a contradiction right away. 
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Slide 8.2.24 
Because we can prove Z from "P and not P" using a sound proof procedure, then "P and not P" entails Z. 

Slide 8.2.25 
So, we see, again, that any conclusion follows from a contradiction. This is the property that can make 
logical systems quite brittle; they're not robust in the face of noise. This problem has been recently 
addressed in AI by a move to probabilistic reasoning methods. Unfortunately, they're out of the scope of 
this course. 

Slide 8.2.26 
Here's an example problem. Stop and do the conversion into CNF before you go to the next slide. 

Slide 8.2.27 
So, the first formula turns into "P or Q". 
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Slide 8.2.28 
The second turns into ("P or R" and "not P or R"). We probably should have simplified it into "False or 
R" at the second step, which reduces just to R. But we'll leave it as is, for now. 

Slide 8.2.29 
Finally, the last formula requires us to do a big expansion, but one of the terms is true and can be left out. 
So, we get "(R or S) and (R or not Q) and (not S or not Q)". 

Slide 8.2.30 
Now we can almost start the proof. We copy each of the clauses over here, and we add the negation of 
the query. Please stop and do this proof yourself before going on. 

Slide 8.2.31 
Here's a sample proof. It's one of a whole lot of possible proofs. 
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Slide 8.2.32 
In choosing among all the possible proof steps that you can do at any point, there are two rules of thumb 
that are really important. 

Slide 8.2.33 
The unit preference rule says that if you can involve a clause that has only one literal in it, that's usually a 
good idea. It's good because you get back a shorter clause. And the shorter a clause is, the closer it is to 
false. 

Slide 8.2.34 
The set-of-support rule says you should involve the thing that you're trying to prove. It might be that you 
can derive conclusions all day long about the solutions to chess games and stuff from the axioms, but 
once you're trying to prove something about what way to run, it doesn't matter. So, to direct your 
"thought" processes toward deriving a contradiction, you should always involve a clause that came from 
the negated goal, or that was produced by the set of support rule. Adhering to the set-of-support rule will 
still make the resolution refutation process sound and complete. 

6.034 Notes: Section 8.3
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Slide 8.3.1 
We are going to use resolution refutation to do proofs in first-order logic. It's a fair amount trickier than 
in propositional logic, though, because now we have variables to contend with. 

Slide 8.3.2 
Let's try to get some intuition through an example. Imagine you knew "for all x, P of x implies Q of x." 
And let's say you also knew P(A). What would you be able to conclude? Q(A), right? You ought to be 
able to conclude Q(A). 

Slide 8.3.3 
This is actually Aristotle's original syllogism: From "All men are mortal" and "Socrates is a man", 
conclude "Socrates is a mortal". 

Slide 8.3.4 
So, how can we justify this conclusion formally? Well, the first step would be to get rid of the 
implication. 
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Slide 8.3.5 
Next, we could substitute the constant A in for the variable x in the universally quantified sentence. By 
the semantics of universal quantification, that's allowed. A universally quantified statement has to be true 
of every object in the universe, including whatever object is denoted by the constant symbol A. And 
now, we can apply the propositional resolution rule. 

The hard part is figuring out how to instantiate the variables in the universal statements. In this problem, 
it was clear that A was the relevant individual. But it not necessarily clear at all how to do that 
automatically. 

Slide 8.3.6 
Now, we have to do two jobs before we can see how to do first-order resolution. 

The first is to figure out how to convert from sentences with the whole rich structure of quantifiers into a 
form that lets us use resolution. We'll need to convert to clausal form, which is a kind of generalization 
of CNF to first-order logic. 

The second is to automatically determine which variables to substitute in for which other ones when 
we're performing first-order resolution. This process is called unification. 

We'll do clausal form next, then unification, and finally put it all together. 

Slide 8.3.7 
Clausal form (which is also sometimes called "prenex normal form") is like CNF in its outer structure (a 
conjunction of disjunctions, or an "and" of "ors"). But it has no quantifiers. Here's an example 
conversion. 

Slide 8.3.8 
We'll go through a step-by-step procedure for systematically converting any sentence in first-order logic 
into clausal form. 
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Slide 8.3.9 
The first step you guys know very well is to eliminate arrows. You already know how to do that. You 
convert an equivalence into two implications. And anywhere you see alpha right arrow beta, you just 
change it into not alpha or beta. 

Slide 8.3.10 
The next thing you do is drive in negation. You already basically know how to do that. We have 
deMorgan's laws to deal with conjunction and disjunction, and we can eliminate double negations. 

As a kind of extension of deMorgan's laws, we also have that not (for all x, alpha) turns into exists x 
such that not alpha. And that not (exists x such that alpha) turns into for all x, not alpha. The reason 
these are extensions of deMorgan's laws, in a sense, is that a universal quantifier can be seen abstractly 
as a conjunction over all possible assignments of x, and an existential as a disjunction. 

Slide 8.3.11 
The next step is to rename variables apart. The idea here is that every quantifier in your sentence should 
be over a different variable. So, if you had two different quantifications over x, you should rename one 
of them to use a different variable (which doesn't change the semantics at all). In this example, we have 
two quantifications involving the variable x. It's especially confusing in this case, because they're nested. 
The rules are like those for a programming language: a variable is captured by the nearest enclosing 
quantifier. So the x in Q(x,y) is really a different variable from the x in P(x). To make this distinction 
clear, and to automate the downstream processing into clausal form, we'll just rename each of the 
variables. 

Slide 8.3.12 
Now, here's the step that many people find confusing. The name is already a good one. Step four is to 
skolemize, named after a logician called Thoralf Skolem. Imagine that you have a sentence that looks 
like: there exists an x such that P(x). The goal here is to somehow arrive at a representation that doesn't 
have any quantifiers in it. Now, if we only had one kind of quantifier in first-order logic, it would be easy 
because we could just mention variables and all the variables would be implicitly quantified by the kind 
of quantifier that we have. But because we have two quantifiers, if we dropped all the quantifiers off, 
there's a mess, because you don't know which kind of quantification is supposed to apply to which 
variable. 
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Slide 8.3.13 
The Skolem insight is that when you have an existential quantification like this, you're saying there is 
such a thing as a unicorn, let's say that P means "unicorn". There exists a thing such that it's a unicorn. 
You can just say, all right, well, if there is one, let's call it Fred. That's it. That's what Skolemization is. 
So instead of writing exists an x such that P(x), you say P(Fred). The trick is that it absolutely must be a 
new name. It can't be any other name of any other thing that you know about. If you're in the process of 
inferring things about John and Mary, then it's not good to say, oh, there's a unicorn and it's John -- 
because that's adding some information to the picture. So to Skolemize, in the simple case, means to 
substitute a brand-new name for each existentially quantified variable. 

Slide 8.3.14 
For example, if I have exists x, y such that R(x,y), then it's going to have to turn into R(Thing1, 
Thing2). Because we have two different variables here, they have to be given different names. 

Slide 8.3.15 
But the names also have to persist so that if you have exists x such that P(x) and Q(x), then if you 
skolemize that expression you should get P(Fleep) and Q(Fleep). You make up a name and you put it in 
there, but every occurrence of this variable has to get mapped into that same unique name. 

Slide 8.3.16 
If you have different quantifiers, then you need to use different names. 
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Slide 8.3.17 
All right. If that's all we had to do it wouldn't be too bad. But there's one more case. We can illustrate it 
by looking at two interpretations of "Everyone loves someone". 

In the first case, there is a single y that everyone loves. So we do ordinary skolemization and decide to 
call that person Englebert. 

Slide 8.3.18 
In the second case, there is a different y, potentially, for each x. So, if we were just to substitute in a 
single constant name for y, we'd lose that information. We'd get the same result as above, which would 
be wrong. So, when you are skolemizing an existential variable, you have to look at the other quantifiers 
that contain the one you're skolemizing, and instead of substituting in a new constant, you substitute in a 
brand new function symbol, applied to any variables that are universally quantified in an outer scope. 

Slide 8.3.19 
In this case, what that means is that you substitute in some function of x, for y. Let's call it Beloved(x). 
Now it's clear that the person who is loved by x depends on the particular x you're talking about. 

Slide 8.3.20 
So, in this example, we see that the existential variable w is contained in the scope of two universally 
quantified variables, x, and z. So, we replace it with G(x,z), which allows it to depend on the choices of 
x and z. 

Note also, that I've been using silly names for Skolem constants and functions (like Englebert and 
Beloved). But you, or the computer, are only obliged to use new ones, so things like F123221 are 
completely appropriate, as well. 
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Slide 8.3.21 
Now we can drop the universal quantifiers because we just replaced all of the existential quantifiers with 
Skolem constants or functions. Now there's only one kind of quantifier left, so we can just drop them 
without losing information. 

Slide 8.3.22 
And then we convert to clauses. This just means multiplying out the and's and the or's, because we 
already eliminated the arrows and pushed in the negations. We'll return a set of sets of literals. A literal, 
in this case, is a predicate applied to some terms, or the negation of a predicate applied to some terms. 

I'm using set notation here for clauses, just to emphasize that they aren't lists; that the order of the literals 
within a clause and the order of the clauses within a set of clauses, doesn't have any effect on its 
meaning. 

Slide 8.3.23 
Finally, we can rename the variables in each clause. It's okay to do that because for all x, P(x) and Q(x) 
is equivalent to for all y, P(y) and for all z, P(z). In fact, you don't really need to do this step, because 
we're assuming that you're always going to rename the variables before you do a resolution step. 

Slide 8.3.24 
So, let's do an example, starting with English sentences, writing them down in first-order logic, and 
converting them to clausal form. Later, we'll do a resolution proof using these clauses. 
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Slide 8.3.25 
John owns a dog. We can write that in first-order logic as there exists an x such that D(x) and O(J, x). 
So, we're letting D stand for "is a dog" and O stand for "owns" and J stand for John. 

Slide 8.3.26 
To convert this to clausal form, we can start at step 4, Skolemization, because the previous three steps 
are unnecessary for this sentence. Since we just have an existential quantifier over x, without any 
enclosing universal quantifiers, we can simply pick a new name and substitute it in for x. Let's call x 
Fido. This will give us two clauses with no variables, and we're done. 

Slide 8.3.27 
Anyone who owns a dog is a lover of animals. We can write that in FOL as For all x, if there exists a y 
such that D(y) and O(x,y), then L(x). We've added a new predicate symbol L to stand for "is a lover of 
animals". 

Slide 8.3.28 
First, we get rid of the arrow. Note that the parentheses are such that the existential quantifier is part of 
the antecedent, but the universal quantifier is not. The answer would come out very differently if those 
parens weren't there; this is a place where it's easy to make mistakes. 
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Slide 8.3.29 
Next, we drive in the negations. We'll do it in two steps. I find that whenever I try to be clever and skip 
steps, I do something wrong. 

Slide 8.3.30 
There's no skolemization to do, since there aren't any existential quantifiers. So, we can just drop the 
universal quantifiers, and we're left with a single clause. 

Slide 8.3.31 
Lovers of animals do not kill animals. We can write that in FOL as For all x, L(x) implies that (for all 
y, A(y) implies not K(x,y)). We've added the predicate symbol A to stand for "is an animal" and the 
predicate symbol K to stand for x kills y. 

Slide 8.3.32 
First, we get rid of the arrows, in two steps. 
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Slide 8.3.33 
Then we're left with only universal quantifiers, which we drop, yielding one clause. 

Slide 8.3.34 
We just have three more easy ones. "Either Jack killed Tuna or curiosity killed Tuna." Everything here is 
a constant, so we get K(J,T) or K(C,T). 

Slide 8.3.35 
"Tuna is a cat" just turns into C(T). 

Slide 8.3.36 
And "All cats are animals" is not C(x) or A(x). I left out the steps here, but I'm sure you can fill them in. 

Okay. Next, we'll see how to match up literals that have variables in them, and move on to resolution. 
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6.034 Notes: Section 8.4

Slide 8.4.1 
We introduced first-order resolution and said there were two issues to resolve before we could do it. 
First was conversion to clausal form, which we've done. Now we have to figure out how to instantiate 
the variables in the universal statements. In this problem, it was clear that A was the relevant 
individual. But it is not necessarily clear at all how to do that automatically. 

Slide 8.4.2 
In order to derive an algorithmic way of finding the right instantiations for the universal variables, we 
need something called substitutions. 

Slide 8.4.3 
Here's an example of what we called an atomic sentence before: a predicate applied to some terms. There 
are two variables here: x and y. We can think of many different ways to substitute terms into this 
expression. Those are called substitution instances of the expression. 
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Slide 8.4.4 
A substitution is a set of variable-term pairs, written this way. It says that whenever you see variable vi, 

you should substitute in term ti. There should not be more than one entry for a single variable. 

Slide 8.4.5 
So here's one substitution instance. P(z,f(w),B). It's not particularly interesting. It's called an alphabetic 
variant, because we've just substituted some different variables in for x and y. In particular, we've put z 
in for x and w in for y, as shown in the substitution. 

Slide 8.4.6 
Here's another substitution instance of our sentence: P(x, f(A), B), We've put the constant A in for the 
variable y. 

Slide 8.4.7 
To get P(g(z), f(A), B), we substitute the term g(z) in for x and the constant A for y. 
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Slide 8.4.8 
Here's one more -- P(C, f(A), B). It's sort of interesting, because it doesn't have any variables in it. We'll 
call an atomic sentence with no variables a ground instance. Ground means it doesn't have any variables. 

Slide 8.4.9 
You can think about substitution instances, in general, as being more specific than the original sentence. 
A constant is more specific than a variable. There are fewer interpretations under which a sentence with a 
constant is true. And even f(x) is more specific than y, because the range of f might be smaller than U. 
You're not allowed to substitute anything in for a constant, or for a compound term (the application of a 
function symbol to some terms). You are allowed to substitute for a variable inside a compound term, 
though, as we have done with f in this example. 

Slide 8.4.10 
We'll use the notation of an expression followed by a substitution to mean the expression that we get by 
applying the substitution to the expression. To apply a substitution to an expression, we look to see if any 
of the variables in the expression have entries in the substitution. If they do, we substitute in the 
appropriate new expression for the variable, and continue to look for possible substitutions until no more 
opportunities exist. 

So, in this second example, we substitute A in for y, then y in for x, and then we keep going and 
substitute A in for y again. 

Slide 8.4.11 
Now we'll look at the process of unification, which is finding a substitution that makes two expressions 
match each other exactly. 
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Slide 8.4.12 
So, expressions omega1 and omega2 are unifiable if and only if there exists a substitution S such that we 

get the same thing when we apply S to omega1 as we do when we apply S to omega2. That substitution, 

S, is called a unifier of omega1 and omega2. 

Slide 8.4.13 
So, let's look at some unifiers of the expressions x and y. Since x and y are both variables, there are lots 
of things you can do to make them match. 

Slide 8.4.14 
If you substitute x in for y, then both expressions come out to be x. 

Slide 8.4.15 
If you put in y for x, then they both come out to be y. 
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Slide 8.4.16 
But you could also substitute something else, like f(f(A)) for x and for y, and you'd get matching 
expressions. 

Slide 8.4.17 
Or, you could substitute some constant, like A, in for both x and y. 

Some of these unifiers seem a bit arbitrary. Binding both x and y to A, or to f(f(A)) is a kind of over-
commitment. 

Slide 8.4.18 
So, in fact, what we're really going to be looking for is not just any unifier of two expressions, but a most 
general unifier, or MGU. 

Slide 8.4.19 
G is a most general unifier of omega1 and omega2 if and only if for all unifiers S, there exists an S-prime 

such that the result of applying G followed by S-prime to omega1 is the same as the result of applying S 

to omega1; and the result of applying G followed by S-prime to omega2 is the same as the result of 

applying S to omega2. 

A unifier is most general if every single one of the other unifiers can be expressed as an extra 
substitution added onto the most general one. An MGU is a substitution that you can make that makes 
the fewest commitments, and can still make these two expressions equal. 
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Slide 8.4.20 
So, let's do a few examples together. What's a most general unifier of P(x) and P(A)? A for x. 

Slide 8.4.21 
What about these two expressions? We can make them match up either by substituting x for y, or y for x. 
It doesn't matter which one we do. They're both "most general". 

Slide 8.4.22 
Okay. What about this one? It's a bit tricky. You can kind of see that, ultimately, all of the variables are 
going to have to be the same. Matching the arguments to g forces y and x to be the same, And since z 
and y have to be the same as well (to make the middle argument match), they all have to be the same 
variable. Might as well make it x (though it could be any other variable). 

Slide 8.4.23 
What about P(x, B, B) and P(A, y, z)? It seems pretty clear that we're going to have to substitute A for x, 
B for y, and B for z. 
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Slide 8.4.24 
Here's a tricky one. It looks like x is going to have to simultaneously be g(f(v)) and g(u). How can we 
make that work? By substituting f(v) in for u. 

Slide 8.4.25 
Now, let's try unifying P(x, f(x)) with P(x,x). The temptation is to say x has to be f(x), but then that x has 
to be f(x), etc. The answer is that these expressions are not unifiable. 

The last time I explained this to a class, someone asked me what would happen if f were the identity 
function. Then, couldn't we unify these two expressions? That's a great question, and it illustrates a point 
I should have made before. In unification, we are interested in ways of making expressions equivalent, in 
every interpretation of the constant and function symbols. So, although it might be possible for the 
constants A and B to be equal because they both denote the same object in some interpretation, we can't 
unify them, because they aren't required to be the same in every interpretation. 

Slide 8.4.26 
An MGU can be computed recursively, given two expressions x and y, to be unified, and a substitution 
that contains substitutions that must already be made. The argument s will be empty in a top-level call to 
unify two expressions. 

Slide 8.4.27 
The algorithm returns a substitution if x and y are unifiable in the context of s, and fail otherwise. If s is 
already a failure, we return failure. 
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Slide 8.4.28 
If x is equal to y, then we don't have to do any work and we return s, the substitution we were given. 

Slide 8.4.29 
If either x or y is a variable, then we go to a special subroutine that's shown in upcoming slides. 

Slide 8.4.30 
If x is a predicate or a function application, then y must be one also, with the same predicate or function. 

Slide 8.4.31 
If so, we'll unify the lists of arguments from x and y in the context of s. 
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Slide 8.4.32 
If not, that is, if x and y have different predicate or function symbols, we simply fail. 

Slide 8.4.33 
Finally, (if we get to this case, then x and y are either lists of predicate or function arguments, or 
something malformed), we go down the lists, unifying the first elements, then the second elements, and 
so on. Each time we unify a pair of elements, we get a new substitution that records the commitments we 
had to make to get that pair of expressions to unify. Each further unification must take place in the 
context of the commitments generated by the previous elements of the lists. 

Because, at each stage, we find the most general unifier, we make as few commitments as possible as we 
go along, and therefore we never have to back up and try a different substitution. 

Slide 8.4.34 
Given a variable var, an expression x, and a substitution s, we need to return a substitution that unifies 
var and x in the context of s. What makes this tricky is that we have to first keep applying the existing 
substitutions in s to var, and to x, if it is a variable, before we're down to a new concrete problem to 
solve. 

Slide 8.4.35 
So, if var is bound to val in s, then we unify that value with x, in the context of s (because we're already 
committed that val has to be substituted for var). 
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Slide 8.4.36 
Similarly, if x is a variable, and it is bound to val in s, then we have to unify var with val in s. (We call 
unify-var directly, because we know that var is still a var). 

Slide 8.4.37 
If var occurs anywhere in x, with substitution s applied to it, then fail. This is the "occurs" check, which 
keeps us from circularities, like binding x to f(x). 

Slide 8.4.38 
Finally, we know var is a variable that doesn't already have a substitution, so we add the substitution of x 
for var to s, and return it. 

Slide 8.4.39 
Here are a few more examples of unifications, just so you can practice. If you don't see the answer 
immediately, try simulating the algorithm. 
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6.034 Notes: Section 8.5

Slide 8.5.1 
Now we know how to convert to clausal form and how to do unification. So now it's time to put it all 
together into first-order resolution. 

Slide 8.5.2 
Here's the rule for first-order resolution. It says if you have a formula alpha or phi and another formula 
not psi or beta, and you can unify phi and psi with unifier theta, then you're allowed to conclude alpha 
or beta with the substitution theta applied to it. 

Slide 8.5.3 
Let's look at an example. Let's say we have P(x) or Q(x,y) and we also have not P(A) or R(B,z). What 
are we going to be able to resolve here? We look for two literals that are negations of one another, and 
try to resolve them. It looks like we can resolve P(x) and not P(A), so P(x) will be phi, Q(x,y) will be 
alpha, P(A) will be psi and R(B,z) will be beta. The unifier will be {x/A}. 
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Slide 8.5.4 
So, we get rid of the P literals, and end up with Q(x,y) or R(B,z), but then we have to apply our 
substitution (the most general unifier that was necessary to make the literals match) to the result. 

Slide 8.5.5 
Finally, we end up with Q(A,y) or R(B,z). 

Slide 8.5.6 
Now let's explore what happens if we have x's in the other formula. What if we replaced the z in the 
second sentence by an x? 

Slide 8.5.7 
The x's in the two sentences are actually different. There is an implicit universal quantifier on the outside 
of each of these sentences (remember that during the process of conversion to clausal form, we first get 
rid of the existentially quantified variables, then drop the remaining quantifiers, which are over 
universally quantified variables.) So, in order to avoid being confused by the fact that these two variables 
named x need not refer to the same thing, we will "rename them apart". 
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Slide 8.5.8 
So that means that before you try to do a resolution step, you're really supposed to rename the variables 
in the two sentences so that they don't share any variables in common. You won't usually need to do this 
that explicitly on your paper as you work through a proof, but if you were going to implement resolution 
in a computer program, or if you find yourself with the same variable in both sentences and it's getting 
confusing, then you should rename the sentences apart. 

The easiest thing to do is to just go through and give every variable a new name. It's OK to do that. You 
just have to do it consistently for each clause. So you could rename to P(x1) or Q(x1, y1), and you can 

name this one not P(A) or R(B, x2). And then you could apply the resolution rule and you don't get into 

any trouble. 

Slide 8.5.9 
Okay. Now that we know how to do resolution, let's practice it on the example that we started in the 
section on clausal form. We want to prove that curiosity killed the cat. 

Slide 8.5.10 
Here are the clauses that we got from the original axioms. 

Slide 8.5.11 
Now we assert the negation of the thing we're trying to prove, so we have not K(C,T). 
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Slide 8.5.12 
We can apply the resolution rule to any pair of lines that contain unifiable literals. Here's one way to do 
the proof. We'll use the "set-of-support" heuristic (which says we should involve the negation of the 
conclusion in the proof), and resolve away K(C,T) from lines 5 and 8, yielding K(J,T). 

Slide 8.5.13 
Then, we can resolve C(T) and not C(x) in lines 6 and 7 by substituting T for x, and getting A(T). 

Slide 8.5.14 
Using lines 4 and 9, and substituting J for x and T for y, we get not L(J) or not A(T). 

Slide 8.5.15 
From lines 10 and 11, we get not L(J). 
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Slide 8.5.16 
From 3 and 12, substituting J for x, we get not D(y) or not O(J,y). 

Slide 8.5.17 
From 13 and 2, substituting Fido for x, we get not D(Fido). 

Slide 8.5.18 
And finally, from lines 14 and 1, we derive a contradiction. Yay! Curiosity did kill the cat. 

Slide 8.5.19 
So, if we want to use resolution refutation to prove that something is valid, what would we do? What do 
we normally do when we do a proof using resolution refutation? 
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Slide 8.5.20 
We say, well, if I know all these things, I can prove this other thing I want to prove. We prove that the 
premises entail the conclusion. 

Slide 8.5.21 
What does it mean for a sentence to be valid, in the language of entailment? That it's true in all 
interpretations. What that means really is that it should be derivable from nothing. A valid sentence is 
entailed by the empty set of sentences. The valid sentence is true no matter what. So we're going to prove 
something with no assumptions. 

Slide 8.5.22 
We can prove it by resolution refutation by negating the sentence and trying to derive a contradiction. 

Slide 8.5.23 
So, let's do an example. Imagine that we would like to show the validity of this sentence, which is a 
classical Aristotelian syllogism. 
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Slide 8.5.24 
We start by negating it and converting to clausal form. We get rid of the arrows and drive in negations to 
arrive at this sentence in clausal form. 

Slide 8.5.25 
We enter the clauses into our proof. 

Slide 8.5.26 
Now, we can resolve lines 1 and 2, substituting A for X, and get Q(A). 

And we can resolve 3 and 4, to get a contradiction. 

6.034 Notes: Section 8.6
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Slide 8.6.1 
In this section, we're going to look at three techniques for making logical proof more useful, and then 
conclude by talking about the limits of first-order logic. 

Slide 8.6.2 
The version of the first-order resolution rule that we have shown you is called binary resolution because 
it involves two literals, one from each clause being resolved. It turns out that this form of resolution is 
not complete for first-order logic. There are sets of unsatisfiable clauses that will not generate a 
contradiction by successive applications of binary resolution. 

Slide 8.6.3 
Here's a pair of clauses. P(x) or P(y) and not P(v) or not P(w). Can we get a contradiction from them 
using binary resolution? 

Slide 8.6.4 
We should be able to! They are clearly unsatisfiable. There is no possible interpretation that will make 
both of these clauses simultaneously true, since that would require P(x) and not (P x) to be true for 
everything in the universe. 
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Slide 8.6.5 
But when we apply binary resolution to these clauses, all we can get is something like P(x) or not P(w) 
(your variables may vary). 

Slide 8.6.6 
If we use binary resolution on this new clause with one of the parent clauses, we get back one of the 
parent clauses. We do not get a contradiction. So, we have shown by counterexample that binary 
resolution is not, in fact, a complete strategy. 

Slide 8.6.7 
It turns out that there is a simple extension of binary resolution that is complete. In that version, known 
as generalized resolution, we look for subsets of literals in one clause that can be unified with the 
negation of a subset of literals in the other clause. In our example from before, each P literal in one 
clause can be unified with its negation in the other clause. 

Slide 8.6.8 
An alternative to using generalized resolution is to introduce a new inference rule, in addition to binary 
resolution, called factoring. In factoring, if you can unify two literals within a single clause, alpha and 
beta in this case, with unifier theta, then you can drop one of them from the clause (it doesn't matter 
which one), and then apply the unifier to the whole clause. 
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Slide 8.6.9 
So, for example, we can apply factoring to this sentence, by unifying P(x,y) and P(v,A). 

Slide 8.6.10 
We get Q(Y) or P(x,Y), and then we have to apply the substitution {x/v, y/A}, which yields the result Q
(A) or P(v,A). 

Note that factoring in propositional logic is just removing duplicate literals from sentences, which is 
obvious and something we've been doing without comment. 

Slide 8.6.11 
And binary resolution, combined with factoring, is complete in a sense that we'll study more carefully 
later in this section. 

Slide 8.6.12 
One thing you can do with resolution is ask for an answer to a question. If your desired conclusion is that 
there exists an x such that P(x), then in the course of doing the proof, we'll figure out what value of x 
makes P(x) true. We might be interested in knowing that answer. For instance, it's possible to do a kind 
of planning via theorem proving, in which the desired conclusion is "There exists a sequence of actions 
such that, if I do them in my initial state, my goal will be true at the end." Generally, you're not just 
interested in whether such a sequence exists, but in what it is. 

One way to deal with this is Green's trick, named after Cordell Green, who pioneered the use of logic in 
software engineering applications. We'll see it by example. 
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Slide 8.6.13 
Let's say we know that all men are mortal and that Socrates is a man. We want to know whether there are 
any mortals. So, our desired conclusion, negated and turned into clausal form would be not Mortal(x). 
Green's trick will be to add a special extra literal onto that clause, of the form Answer(x). 

Slide 8.6.14 
Now, we do resolution as before, but when we come to a clause that contains only the answer literal, we 
stop. And whatever the variable x is bound to in that literal is our answer. 

Slide 8.6.15 
When we defined the language of first-order logic, we defined a special equality predicate. And we also 
defined special semantics for it (the sentence term1 equals term2 holds in an interpretation if and only if 
term1 and term2 both denote the same object in that interpretation). In order to do proofs that contain 
equality statements in them, we have to add a bit more mechanism. 

Slide 8.6.16 
One strategy is to add one more special proof rule, just as we did with factoring. The new proof rule is 
called paramodulation. It's kind of hairy and hard to use, though, so we are not going to do it in this class 
(though it is implemented in most serious theorem provers). 
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Slide 8.6.17 
Another strategy, which is easier to understand, and instructive, is to treat equality almost like any other 
predicate, but to constrain its semantics via axioms. 

Just to make it clear that Equals, which we will write as Eq, is a predicate that we're going to handle 
normally in resolution, we'll write it with a word rather than the equals sign. 

Slide 8.6.18 
Equals has two important sets of properties. The first three say that it is an equivalence relation. First, it's 
symmetric: every x is equal to itself. 

Slide 8.6.19 
Second, it's reflexive. If x is equal to y then y is equal to x. 

Slide 8.6.20 
Third, it's transitive. That means that if x equals y and y equals z, then x equals z. 
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Slide 8.6.21 
The other thing we need is the ability to "substitute equals for equals" into any place in any predicate. 
That means that, for each place in each predicate, we'll need an axiom that looks like this: for all x and y, 
if x equals y, then if P holds of x, it holds of y. 

Slide 8.6.22 
Let's go back to our old geometry domain and try to prove what the hat of A is. 

Slide 8.6.23 
We know that these axioms (our old KB4) entail that hat(A) = A. We'll have to add in the equality 
axioms, as well. 

Slide 8.6.24 
Let's see if we can derive that, using resolution refutation and Green's trick. 
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Slide 8.6.25 
Here's the result of my clausal-form converter run on those axioms. 

Slide 8.6.26 
Now, our goal is to prove exists x such that Eq(hat(A),x). That is negated and turned into clausal form, 
yielding not Eq(hat(A),x). And we add in the answer literal, so we can keep track of what the answer is. 

Slide 8.6.27 
Here's the proof. The answer is A! And we figured this out without any kind of enumeration of 
interpretations. 

Slide 8.6.28 
What if we wanted to use the same axioms to figure out what the hat of D is? We just change our query 
and do the proof. Here it is. 
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Slide 8.6.29 
Here'a a worked example of a problem with equality. 

Slide 8.6.30 
Now, let's see what we can say, in general, about proof in first-order logic. 

Remember that a proof system is complete, if, whenever the KB entails S, we can prove S from KB. 

Slide 8.6.31 
In 1929, Godel proved a completeness theorem for first-order logic: There exists a complete proof 
system for FOL. But, living up to his nature as a very abstract logician, he didn't come up with such a 
proof system; he just proved one existed. 

Slide 8.6.32 
Then, in 1965, Robinson came along and showed that resolution refutation is sound and complete for 
FOL. 
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Slide 8.6.33 
So, we know that if a proof exists, then we can eventually find it with resolution. Unfortunately, we no 
longer know, as we did in propositional resolution, that eventually the process will stop. So, it's possible 
that there is no proof, and that the resolution process will run forever. 

This makes first-order logic what is known as "semi-decidable". If the answer is "yes", that is, if there is 
a proof, then the theorem prover will eventually halt and say so. But if there isn't a proof, it might run 
forever! 

Slide 8.6.34 
So, things are relatively good with regular first-order logic. And they're still fine if you add addition to 
the language, allowing statements like P(x) and (x + 2 = 3). But if you add addition and multiplication, it 
starts to get weird! 

Slide 8.6.35 
In 1931, Godel proved an incompleteness theorem, which says that there is no consistent, complete proof 
system for FOL plus arithmetic. (Consistent is the same as sound.) Either there are sentences that are 
true, but not provable, or there are sentences that are provable, but not true. It's not so good either way. 

Slide 8.6.36 
Here's the roughest cartoon of how the proof goes. Arithmetic gives you the ability to construct code 
names for sentences within the logic, and therefore to construct sentences that are self-referential. This 
sentence, P, is sometimes called the Godel-sentence. P is "P is not provable". 

file:///C|/Documents%20and%20Settings/Administrator/My%...ching/6.034/07/lessons/Chapter8/logicII-handout-07.html (48 of 60)4/20/2007 7:55:21 AM



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide 8.6.37 
If P is true, then P is not provable (so the system is incomplete). If P is false, then P is provable (so the 
system is inconsistent). 

This result was a huge blow to the current work on the foundations of mathematics, where they were, 
essentially, trying to formalize all of mathematical reasoning in first-order logic. And it pre-figured, in 
some sense, Turing's work on uncomputability. 

Ultimately, though, just as uncomputability doesn't worry people who use computer programs for 
practical applications, incompleteness shouldn't worry practical users of logic. 

6.034 Notes: Section 8.7

Slide 8.7.1 
Now that we've studied the syntax and semantics of logic, and know something about how to do 
inference in it, we're going to talk about how logic has been applied in real domains, and look at an 
extended example. 

Slide 8.7.2 
There is currently a big resurgence of logical representations and inference in the context of the web. As 
it stands now, web pages were written in natural language (English or French, etc), by the people and for 
the people. But there is an increasing desire to have computer programs (web agents or 'bots) crawl the 
web and figure things out by "reading" web pages. As we'll see in the next module of this course, it can 
be quite hard to extract the meaning from text written in natural language. So the World-Wide Web 
Consortium, in conjunction with people in universities and industry, are defining a standard language, 
which is essentially first-order logic, for formally encoding information in web pages. Information that is 
written in this formal language will be much easier to extract automatically. 
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Slide 8.7.3 
It is becoming more appealing, in business, to have computers talk directly to one another, and to leave 
humans out of the loop. One place this can happen is in negotiating simple contracts between companies 
to deliver goods at some price. Benjamin Grosof, who is a professor in the Sloan School, works on using 
non-monotonic logic (a version of first-order logic, in which you're allowed to have conflicting rules, and 
have a system for deciding which ones have priority) to specify a company's business rules. 

Slide 8.7.4 
Another example, which we'll pursue in detail, is the language the airlines use to specify the rules on 
their airfares. It turns out that every day, many times a day, airlines revise and publish (electronically) 
their fare structures. And, as many of you know, the rules governing the pricing of airplane tickets are 
pretty complicated, and certainly unintuitive. In fact, they're so complicated that the airlines had to 
develop a formal language that is similar to logic, in order to describe their different kinds of fares and 
the restrictions on them. 

Amazingly, there are on the order of 20 million different fares! To generate a price for a particular 
proposed itinerary, it requires piecing together a set of fares to cover the parts of the itinerary. Typically, 
the goal is to find the cheapest such set of fares, subject to some constraints. 

Slide 8.7.5 
We're not going to worry about how to do the search to find the cheapest itinerary and fare structure 
(that's a really hard and interesting search problem!). Instead, we'll just think about pricing a particular 
itinerary. 

Pricing an airline ticket is not as simple as adding up the prices for the individual flight legs. There are 
many different pricing schemes, each depending on particular attributes of the combination of flights that 
the passenger proposes to take. For instance, at some point in 1998, American Airlines had 29 different 
fares for going from Boston to San Francisco, ranging in price from $1943 to $231, each with a different 
constraint on its use. 

In this discussion, we won't get into the actual ticket prices; instead we'll work on writing down the 
logical expressions that describe when a particular fare applies to a proposed itinerary. 

Slide 8.7.6 
Here are some examples of airfare restrictions that we might want to encode logically: 

●     The passenger is under 2 or over 65 
●     The passenger is accompanying another passenger who is paying full fare 
●     It doesn't go through an expensive city 
●     There are no flights during rush hour (defined in local time) 
●     The itinerary stays over a Saturday night 
●     Layovers are legal: not too short; not too long 
●     Round-the-world itinerary that doesn't backtrack 
●     The itinerary is a regular two-trip round-trip 
●     This price applies to one flight, as long as there is no other flight in this itinerary operated by El 
Cheapo Air 
●     If the sum of the fares for a circle trip with three legs is less than the "comparable" round-trip price 
between the origin and any stopover point, then you must add a surcharge. 
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Slide 8.7.7 
The first step in making a logical formalization of a domain is coming up with an ontology. According 
to Leibniz (a philosopher from the 17th century), ontology is "the science of something and of nothing, 
of being and not-being, of the thing and the mode of the thing, of substance and accident." Whoa! I 
wish our lecture notes sounded that deep. 

Slide 8.7.8 
Now there are web sites called www.ontology.org with paper titles like "The Role of Ontological 
Engineering in B2B Net Markets". That's just as scary. 

Slide 8.7.9 
For us, more prosaically, an ontology will be a description of the kinds of objects that you have in your 
world and their possible properties and relations. Making up an ontology is a lot like deciding what 
classes and methods you'll need when you design an object-oriented program. 

Slide 8.7.10 
Okay. So what are the kinds of things we have in the airfare domain? That's a hard question, because it 
depends on the level of abstraction at which we want to make our model. Probably we don't want to talk 
about particular people or airplanes; but we might need to talk about people in general, in terms of 
various properties (their ages, for example, but not their marital status), or airplane types. We will need a 
certain amount of detail though, so, for instance, it might matter which airport within a city you're using, 
or which terminal within an airport. Often you have to adjust the level of abstraction that you use as you 
go along. 
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Slide 8.7.11 
Here's a list of the relevant object types I came up with: 

●     passenger 
●     flight 
●     city 
●     airport 
●     terminal 
●     flight segment (a list of flights, to be flown all in one "day") 
●     itinerary (a passenger and a list of flight segments) 

Slide 8.7.12 
We'll also need some non-concrete object types, including 

●     list 
●     number 

Slide 8.7.13 
Once we know what kinds of things we have in our world, we need to come up with a vocabulary of 
constant names, predicate symbols, and function symbols that we'll use to talk about their properties 
and relations. 

There are two parts to this problem. We have to decide what properties and relations we want to be 
able to represent, and then we have to decide how to represent them. 

Slide 8.7.14 
Let's talk, for a minute, about something simple, like saying that an object named P is red. There are a 
number of ways to say this, including: 

●     Red(P) 
●     Color(P, Red) 
●     color(P) = Red 
●     Property(P, Color, Red) 

file:///C|/Documents%20and%20Settings/Administrator/My%...ching/6.034/07/lessons/Chapter8/logicII-handout-07.html (52 of 60)4/20/2007 7:55:21 AM



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide 8.7.15 
Let's look at the difference between the first two. Red(P) seems like the most straightforward way to 
say that P is red. But what if we wanted to write a rule saying that all the blocks in a particular stack, S, 
are the same color? Using the second representation, we could say: 

exists c. all b. In(b,S) -> Color(b, c)

In this case, we have reified redness; that is, we've made it into an object that can be named and 
quantified over. It will turn out that it's often useful to use this kind of representation. 

Slide 8.7.16 
It's possible to go even farther down this road, in case, for instance, we wanted to say that all the blocks 
in stack S have all the same properties: 

all p. exists v. all b. In(b,S) -> Property(b, p, v)

That is, for every property, there's a value, such that every block in S has that value for the property. 

Some people advocate writing all logical specifications using this kind of formalization, because it is 
very general; but it's also kind of hard to read. We'll stick to representations closer to Color(P, 
Red). 

Slide 8.7.17 
The particular relations we'll use come from two sources. Some relations will be used to specify the basic 
facts in our knowledge-base. 

Slide 8.7.18 
Here are some of the basic relations in our domain. I've named the arguments with the types of objects 
that we expect to be there. This is just an informal convention to show you how we intend to use the 
relations. (There are logics that are strongly typed, which require you to declare the types of the 
arguments to each relation or function). 
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Slide 8.7.19 
So, we might describe passenger Fred using the sentences 

Age(Fred, 47) 
Nationality(Fred, US) 
~Wheelchair(Fred) 

This only serves to encode a very simple version of this domain. We haven't started to talk about time 
zones, terminals, metropolitan areas (usually it's okay to fly into San Jose and then out of San 
Francisco, as if they were the same city), airplane types, how many reservations a flight currently has, 
and so on and so on. 

Slide 8.7.20 
Other relations will be used to express the things we want to infer. An example in this domain might be 
Qualifies_for_fare_class_37 or something else equally intuitive. As we begin trying to 
write down a logical expression for Qualifies_for_fare_class_37 in terms of the basic 
relations, we'll find that we want to define more intermediate relations. It will be exactly analogous to 
defining functions when writing a Scheme program: it's not strictly necessary, but no-one would ever 
be able to read your program (and you probably wouldn't be able to write it correctly) if you didn't. 

Slide 8.7.21 
We will often define relations using implications rather than equivalence. It makes it easier to add 
additional pieces of the definition (circumstances in which the relation would be true). 

Slide 8.7.22 
However, written this way, we can't infer anything from knowing that the relation holds of some objects. 
If we need to do that, we have to write out the equivalence. 
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Slide 8.7.23 
Okay. Let's start with a very simple rule. Let's say that an itinerary has the Infant_Fare property if the 
passenger is under age 2. We can write that as 

 all i, a, p. Passenger(i,p) ^ Age(p,a) ^ a < 2  -> Infant_Fare(i)

Slide 8.7.24 
It's not completely obvious that this is the right way to write the rule. For instance, it's useful to note 
that this is equivalent to saying 

 all i. (exists a, p. Passenger(i,p) ^ Age(p,a) ^ a < 2)  
                                        -> Infant_Fare(i)

Slide 8.7.25 
This second form is clearer (though the first form is closer to what we'll use next, when we talk about 
rule-based systems). Note, also, that changing the implication to equivalence in these two statements 
makes them no longer be equivalent. 

Slide 8.7.26 
We just snuck something in here: a < 2. We'll need some basic arithmetic in almost any interesting logic 
domain. How can we deal with that? We saw, in the previous section, that adding arithmetic including 
multiplication means that our language is no longer complete. But that's the sort of thing that worries 
logicians more than practitioners. 
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Slide 8.7.27 
In this domain we'll need addition and subtraction and greater-than. One strategy would be to axiomatize 
them in logic, but that's usually wildly inefficient. Most systems for doing practical logical inference 
include built-in arithmetic predicates that will automatically evaluate themselves if their arguments are 
instantiated. So if, during the course of a resolution proof, you had a clause of the form 

P(a) v (3 < 2) v (a > 1 + 2) 

it would automatically simplify to 

P(a) v (a > 3)

. 

Slide 8.7.28 
Okay. Now, let's go to a significantly harder one. This isn't exactly a fare restriction; it's more of a 
correctness criterion on the flights within the itinerary. The idea is that an itinerary can be made up of 
multiple flight segments; each flight segment might, itself, be made up of multiple flights. In order for 
the itinerary to be well-formed, the flight segments are not required to have any particular relation to 
each other. However, there are considerable restrictions on a flight segment. One way to think about a 
flight segment is as a sequence of flights that you would do in one day (though it might actually last for 
more than one day if you're going for a long time). 

Slide 8.7.29 
For a flight segment to be well-formed, it has to satisfy the following properties: 

●     The departure and arrival airports match up correctly 
●     The layovers (gaps between arriving in an airport and departing from it) aren't too short 

(so that there's a reasonable probability that the passenger will not miss the connection) 
●     The layovers aren't too long (so that the passenger can't spend a week enjoying him or 

herself in the city; we need to be sure to charge extra for that!) 

So, let's work toward developing a logical specification of the well-formedness of a flight segment. A 
flight segment is a list of flights. So, we'll make a short detour to talk about lists in logic, then come 
back to well-formed flight-segments. 

Slide 8.7.30 
In the list of relations for the domain, we included a constant Nil and a function cons, without 
explanation. Here's the explanation. 
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Slide 8.7.31 
We can make and use lists in logic, much as we might do in Scheme. We have a constant that stands for 
the empty list. Then, we have a function cons that, given any object and a list, denotes the list that has the 
object argument as its head (car) and the list argument as its tail (cdr). 

So cons(A,cons(B,Nil)) is a list with two elements, A and B. 

Slide 8.7.32 
We can also use the power of unification to specify conditions to assertions. So we can write for all x 
lengthOne(cons(x,Nil)), which is a more compact way of saying that every list that is equal to the cons 
of an element onto Nil has the property of being lengthOne. 

Slide 8.7.33 
Now that we know how to do some things with lists, we'll go back to the problem of ensuring that a 
flight segment is well-formed. This is basically a condition on all the layovers in the segment, so we'll 
have to run down the list making sure it's all okay. 

Slide 8.7.34 
We can start with a simple case. If the flight segment has one flight, then it's well-formed. We can write 
this as all f. WellFormed(cons(f, Nil)). 
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Slide 8.7.35 
Now, let's do the hard case. We can say that a flight segment with more than one flight is well-formed if 
the first two flights are contiguous (end and start in the same airport), the layover time between the first 
two flights is legal, and the rest of the flight segment is well-formed. 

Slide 8.7.36 
In logic, that becomes 

all f1, f2, r. Contiguous(f1, f2) ^ LegalLayover(f1, f2) ^
       WellFormed(cons(f2, r)) -> WellFormed(cons(f1, cons(f2,r)))

Slide 8.7.37 
Note that we've invented some vocabulary here. Contiguous and LegalLayover are neither given to us 
as basic relations, nor the relation we are trying to define. We made them up, just as you make up 
function names, in order divide our problem into conquerable sub-parts. 

Slide 8.7.38 
What makes two flights contiguous? The arrival airport of the first has to be the same as the departure 
airport of the second. We can write this as 

all f1, f2. (exists c. Destination(f1, c) ^ Origin(f2, c)) 
                   -> Contiguous(f1, f2)
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Slide 8.7.39 
Now, what makes layovers legal? They have to be not too short and not too long. 

all f1, f2. 
    LayoverNotTooShort(f1, f2) ^ LayoverNotTooLong(f1, f2) ->
        LayoverLegal(f1, f2)

Slide 8.7.40 
Let's say that passengers need at least 30 minutes to change planes. 

That comes out fairly straightforwardly as 

all f1, f2. (exists t1, t2. 
    Arrival_Time(f1, t1) ^ Departure_Time(f2, t2) ^ (t2 - t1 > 30)) 
->
                     Layover_Not_Too_Short(f1, f2)

Slide 8.7.41 
This is a very simple version of the problem. You could imagine making this incredibly complex and 
nuanced. How long does it take someone to change planes? It might depend on: whether they're in a 
wheelchair, whether they have to change terminals, how busy the terminals are, how effective the inter-
terminal transportation is, whether they have small children, whether the airport has signs in their 
native language, whether there's bad weather, how long the lines are at security, whether they're from a 
country whose citizens take a long time to clear immigration. 

You probably wouldn't want to add each of these things as a condition in the rule about layovers. 
Rather, you would want this system, ultimately, to be connected to a knowledge base of common sense 
facts and relationships, which could be used to deduce an expected time to make the connection. 
Common-sense reasoning is a fascinating area of AI with a long history. It seems to be (like many 
things!) both very important and very hard. 

Slide 8.7.42 
We'll continue in our more circumscribed setting, to address the question of what makes a layover not be 
too long. This will have an easy case and a hard case. The easy case is that a layover is not too long if it's 
less than three hours: 

all f1, f2. (exists t1, t2. 
    ArrivalTime(f1, t1) ^ DepartureTime(f2, t2) ^ 
    (t2 - t1 < 180)) -> LayoverNotTooLong(f1, f2)

file:///C|/Documents%20and%20Settings/Administrator/My%...ching/6.034/07/lessons/Chapter8/logicII-handout-07.html (59 of 60)4/20/2007 7:55:21 AM



6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

Slide 8.7.43 
Now, for the hard case. Let's imagine you've just flown into Ulan Bator, trying to get to Paris. And 
there's only one flight per day from Ulan Bator. We might want to say that your layover is not too long 
if there are no flights from here to your next destination that go before the one you're scheduled to take 
(and that have an adequately long layover). 

all f1, f2 (exists o, d, t2.
      Origin(f2, o) ^ Destination(f2, d) ^ DepartureTime(f2,t2) ^
            ~ exists f3, t3. ( Origin(f3, o) ^ Destination(f3, d) ^
                           DepartureTime(f3,t3) ^ (t3 < t2)
                         ^  LayoverNotTooShort(f1, f3))) ->
                LayoverNotTooLong(f1, f2)       

Of course, you can imagine all sorts of common-sense information that might influence this 
definition of LayoverNotTooLong, just as in the previous case. 

We haven't been writing these definitions with efficiency in mind. In all likelihood, if we tried to put 
them into a regular theorem prover, we would never get an answer out. In the next segment of material, we'll see how to use a restricted version of first-order logic to get fairly efficient 
logical programs. And we'll continue this example there. 
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