
6.034 Artificial Intelligence
March 23, 2007 Recitation # 5

1 True/False Questions on Search

1. [T/F] If all moves are unit cost, breadth-first search always finds the optimal path to
the goal.

2. [T/F] Iterative-deepening search always finds the optimal path to the goal.

3. [T/F] In a graph with no loops, depth-first search always finds the goal quicker than
breadth-first search.

4. [T/F] All admissible heuristics are equal. That is, A* will search states in the same
order for all admissible heuristics.

1



2 Search Trees

Imagine a problem with a robot trying to navigate in the following maze from the start
position “S” to the goal position “G”. Draw the complete search tree associated with the
problem, listing the cost of each path:

S

G

G

2



3 More Searches

3.1 Best-First

Find the order that nodes are expanded in a best-first search with a visited list.

3



3.2 Uniform Cost

Find the order that nodes are expanded in a uniform-cost search with a strict expanded list

3.3 A*

Find the order that nodes are expanded in a A* search with a strict expanded list

4



4 Code Overview

(define (SEARCH goal ; goal state

successors ; successor function

pending ; pending list function (the Q)

expanded ; expanded list function (or #f)

visited ; visited list function (or #f)

)

(cond

((pending ’empty?) ; Failed, at least be cute...

(display* "Cain’t get thar from heah.")

#f)

(else

(let ((current (pending ’next))) ; get (and remove) node to expand

;; Show some status information

(if *verbose* ; only in verbose mode.

(search-node-display current "Current node: "))

(set! *number-of-search-steps* (1+ *number-of-search-steps*))

(cond ((= 0 (remainder *number-of-search-steps* 100))

(pending ’summary)))

(cond ((and expanded

(expanded ’member (search-node-state current)))

(if *verbose* (display* "Already expanded."))

(search goal successors pending expanded visited))

((if (procedure? goal) ; are we there?

(goal (search-node-state current))

(equal? (search-node-state current) goal))

(pending ’summary) ; print a summary of pending list

(search-node-display current " Final: ") ; display node

(let ((path (search-node-path current)))

(display* " Path length = " (length path))

(display* " Path = " (map state-name path)))

current)

(else

;; pending still has entries in it and we haven’t found goal

;; yet, so expand current node and merge results into pending

;; and update the expanded and visited lists.

(search-update current (successors current) pending expanded visited)

(search goal successors pending expanded visited))))

)))

{

5


