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Circuit Equivalents

Circuit Equivalents

We saw last week that pieces of circuits cannot be abstracted as functional elements; the actual
voltages and currents in them will depend on how they are connected to the rest of a larger circuit.
However, we can still abstract them as sets of constraints on the values involved.

In fact, when a circuit includes only resistors and voltage sources, we can derive a much simpler
circuit that induces the same constraints on currents and voltages as the original one. This a kind
of abstraction that’s similar to the abstraction that we saw in linear systems: we can take a complex
circuit and treat it as if it were a much simpler circuit.

If somebody gave you a circuit made of resistors and voltage sources, and put it in a black box
with two wires coming out, labeled + and -, what could you do with it? You could try to figure
out what constraints that box puts on the voltage between and current through the wires coming
out of the box.

We can start by figuring out the open-current voltage across the two terminals. That is the voltage
drop we’d see across the two wires if nothing were connected to them. We’ll call that Voc. Another
thing we could do is connect the two wires together, and see how much current runs through them;
this is called the short-circuit current. We’ll call that isc.

It turns out that these two values are sufficient to characterize the constraint that this whole box
will exert on a circuit connected to it. The constraint will be a relationship between the voltage
across its terminals and the current flowing through the box. We can derive it by using Thévenin’s
theorem:

Theorem 1 Any combination of voltage sources and resistances with two terminals can be replaced
by a single voltage source Vth and a single series resistor Rth. The value of Vth is the open circuit
voltage at the terminals Voc, and the value of Rth is Vth divided by the current with the terminals
short circuited (−isc).

Let’s look at a picture, then an example. In figure 1(a) we show a picture of a black (well, gray)
box, abstracted as being made up of a circuit with a single voltage source Vth and a single resistor
Rth in series. The open-circuit voltage from n+ to n− is clearly Vth. The short-circuit current
isc (in the direction of the arrow) is −Vth/Rth. So, this circuit would have the desired measured
properties.1

1The minus sign here can be kind of confusing. The issue is this: when we are treating this circuit as a black
box with terminals n+ and n−, we think of the current flowing out of n+ and in to n−, which is consistent with the
voltage difference Vth = V+ − V−. But when we compute the short-circuit current by wiring n+ and n− together,
we are continuing to think of isc as flowing out of n+, but now it is coming out of n− and in to n+, which is the
opposite direction. So, we have to change its sign to compute Rth.
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Figure 1: Thévenin equivalence examples

Figure 1(b) shows an actual circuit. We’ll compute its associated open-circuit voltage and short-
circuit current, construct the associated Thévenin equivalent circuit, and be sure it has the same
properties.

The first step is to compute the open-circuit voltage. This just means figuring out the difference
between the voltage at nodes n+ and n−, under the assumption that the current i = 0. An easy
way to do this is to set n− as ground and then find the node voltage at n+. Let’s write down the
equations:

v+ − v1 = iARA

v1 − v− = Vs

v+ − v− = iBRB

−iA − iB = 0

iA − iS = 0

v− = 0

We can solve these pretty straightforwardly to find that

v+ = Vs
RB

RA + RB
.

So, we know that, for this circuit, Rth = Vs
RB

RA+RB
.

Now, we need the short-circuit current, isc. To find this, imagine a wire connecting n+ to n−; we
want to solve for the current passing through this wire. We can use the equations we had before,
but adding equation 4 wiring n+ to n−, and adding the current isc to the KCL equation 5.

v+ − v1 = iARA (1)
v1 − v− = Vs (2)
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Figure 2: Thévenin equivalence examples

v+ − v− = iBRB (3)
v+ = v− (4)

isc − iA − iB = 0 (5)
iA − iS = 0 (6)

v− = 0 (7)

We can solve this system to find that

isc = −
Vs

RA
,

and therefore that

Rth = −
Vth

isc

= Vs
RB

RA + RB

Vs

RA

=
RARB

RA + RB

What can we do with this information? We could use it during circuit analysis to simplify parts of
a circuit model, individually, making it easier to solve the whole system. We could also use it in
design, to construct a simpler implementation of a more complex network design. One important
point is that the Thévenin equivalent circuit is not exactly the same as the original one. It will
exert the same constraints on the voltages and currents of a circuit that it is connected to, but will,
for example, have different heat dissipation properties.

Example

Here’s another example, in figure 2(a). It’s a bit more hassle than the previous one, but you
can write down the equations to describe the constituents and KCL constraints, as before. If we
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Figure 3: Thévenin equivalence examples

let RA = 2KΩ, RB = RC = RD = 1KΩ, and VS = 15V , then we can solve for Vth = 7.5V and
Rth = 2KΩ. So, it is indistinguishable by current and voltage from the circuit shown in figure 2(b).

In figure 3(a) we show the same circuit, but with the connections that run outside the box made
to different nodes in the circuit. Note also that the top lead is marked n− and the bottom one
n+. If we solve, using the same values for the resistors and voltage source as before, we find that
Vth = −3.75V and Rth = 1750Ω. We show the Thévenin equivalent circuit in figure 3(b). We’ve
changed the polarity of the voltage source and made it 3.75V (instead of having the + terminal at
the top and a voltage of -3.75), but that’s just a matter of drawing.

These results are quite different: so, the moral is, it matters which wires you connect up to what!


