
6.006- Introduction to Algorithms

Lecture 3
Prof. Patrick Jaillet

Overview

• Runway reservation system:

– Definition

– How to solve with lists

• Binary Search Trees

– Operations

Readings: CLRS 10, 12.1-3

10

125

1 6

7

http://izismile.com/tags/Gibraltar/

Runway reservation system

• Problem definition:

– Single (busy) runway

– Reservations for landings

• maintain a set of future landing times

• a new request to land at time t

• add t to the set if no other landings are
scheduled within < 3 minutes from t

• when a plane lands, removed from the set

Runway reservation system

• Example

– R = (41, 46, 49, 56)

– requests for time:

• 44 => reject (46 in R)

• 53 => ok

• 20 => not allowed (already past)

• Ideas for efficient implementation ?

Proposed algorithm

• (keep R as a sorted list)

• Complexity?

• Can we do better?

init: R = []

req(t): if t < now: return "error"

for i in range (len(R)):

if abs(t-R[i]) < 3: return "error"

R.append(t)

R = sorted(R)

land: t = R[0]

if (t != now) return error

R = R[1:] (drop R[0] from R)

Some options:

• Keep R as a sorted list:
– takes linear time to insert element in proper place
– a 3 minute check can then be done in O(1)

• Keep R as a sorted array:
– takes O(logn) to find a place to insert new time ...
– but still requires linear time to actually insert

(requires shifting of elements)

• Keep R in unsorted order
– takes linear time to search for collisions

Need: fast insertion into sorted list

Binary Search Trees (BSTs)

• Each node x has:

– key[x]

– Pointers:

• left[x]

• right[x]

• p[x]

10

125

1 6

7

Binary Search Trees (BSTs)

• Property: for any node x:

– For all nodes y in the
left subtree of x:

key[y] ≤ key[x]

– For all nodes y in the
right subtree of x:

key[y] ≥ key[x]

• How are BSTs made ?

10

125

1 6

7

Growing BSTs

• Insert 10

• Insert 12

• Insert 5

• Insert 1

• Insert 6

• Insert 7

10

125

1 6

7

root

height

3

2

1

0

BST as a data structure

• Operations:
– insert(k) (note: can do the

“within 3” check for reservation
during insertion)

– find(k): finds the node
containing key k (if it exists)

– findmin(x): finds the minimum
of the tree rooted at x

– deletemin(): finds the minimum
of the tree and delete it

– next-larger(x): finds the next
element after element x

49

5641

37 46

49

5641

46

Next-larger

next-larger(x):

• If right[x] ≠ NIL then

return findmin(right[x])

• Otherwise

y  p[x]

While y≠NIL and x=right[y] do

• x  y

• y  p[y]

Return y

next-larger()

5

7

10

125

1 6

7

next-larger()

Back to runway reservation system

• New requirement: How
many planes are scheduled
to land at times ≤ t ?

• Augment the BST structure
by keeping track of size of
subtrees:

• Walk down tree to find
desired time

– Add in nodes that are
smaller

– Add in subtree sizes to
the left

Analysis

• We have seen insertion,
deletion, search, findmin, etc.

• How much time does any of
this take ?

• Worst case: O(height)

=> height really important

• After we insert n elements,
what is the worst possible BST
height ?

10

125

1 6

7

Analysis

• n-1

• so, still O(n) for the runway
reservation system operations

• Next lecture: balanced BSTs

• Readings: CLRS 13.1-2

1

5

6

7

10

12

