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Prof. Patrick Jaillet 



Outline 
•  “Numerics II” - algorithms for 

operations on large numbers 
•  Today: 

–  quick review: irrationals; large 
number operations: addition, 
multiplication, division 

–  cryptography (CLRS 31) 
• motivations 
•  primality testing 
• modular exponentiation 
•  integer factorization 

        2        3        5        7      11      13      17      19       23     29  
      31      37      41      43      47      53      59      61      67      71  
      73      79      83      89      97    101    103    107    109    113  
    127    131    137    139    149    151    157    163    167    173  
    179    181    191    193    197    199    211    223    227    229  
    233    239    241    251    257    263    269    271    277    281  
    283    293    307    311    313    317    331    337    347    349  
    353    359    367    373    379    383    389    397    401    409  
    419    421    431    433    439    443    449    457    461    463  
    467    479    487    491    499    503    509    521    523    541  
    547    557    563    569    571    577    587    593    599    601  
    607    613    617    619    631    641    643    647    653    659  
    661    673    677    683    691    701    709    719    727    733  
    739    743    751    757    761    769    773    787    797    809  
    811    821    823    827    829    839    853    857    859    863  
    877    881    883    887    907    911    919    929    937    941  
    947    953    967    971    977    983    991    997    .... 



Computing        to lots of digits ... why?  
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1. 414 213 562 373 095 
    048 801 688 724 209 
    698 078 569 671 875 
    376 948 073 176 679 ... 

question: pattern? 



Computing        to lots of digits ... why?  

•  geometry problem 

– BD =1 
– what is AD? 

•  question: first non-trivial digits?  
(Taylor’s expansion                                                                       ) 

=> AD =10-12 + 10-36 + 2.10-60 + 5.10-84 
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Cryptography 

•  long history 
•  modern development 

– public-key cryptography 
•  some designed as early as 1973 – UK – but 

classified top-secret and revealed publicly in 
1998 

• RSA (1978) for “Rivest, Shamir, and 
Adleman” is the first algorithm suitable for 
signing and encryption – widely used in 
electronic commerce protocols 



Public-key cryptography 

•  key generation 
–  public key 
–  private key 

•  encryption 

•  decryption 



RSA: key generation 

•  choose two prime number p and q 
•  compute n=pq 
•  compute f(n)=(p-1)(q-1) 
•  choose e, 1<e<f(n), and gcd(e,f(n))=1 

(e and f(n) are co-prime) 
–  e is released as the public key exponent 

•  find d=e-1 mod f(n) 
–  d is kept as the private key exponent 



RSA: encryption 

•  Alice transmits her public 
key (n,e) to Bob  

•  Bob wishes to send a 
message “Hello Alice!” to 
Alice 
–  he turns the message into an 

integer m, 0<m<n, using an 
agreed upon protocol (a 
padding scheme) 

–  he computes c = me mod n 
–  he transmits c to Alice 



RSA: decryption 

•  Alice can recover m from c 
by using her private key 
exponent d as follows: 

 m = cd mod n 

•  Given m, she can recover the 
message  “Hello Alice!” by 
reversing the padding scheme 



RSA: example 
•  key generation: 

–  choose p = 61 and q = 53 
–  compute n=pq=3233 
–  compute f(n)=(p-1)(q-1)=3120 
–  choose a prime number e not a divisor of 

3120, say e =17 
–  find d = e-1 mod f(n)=2753 
–  the public key is (n,e)=(3233,17) 
–  the private key is (n,d)=(3233,2753) 

•  encryption: m =65 is encrypted as  
c = 6517 mod 3233=2790 

•  decryption: c=2790 is decrypted as  
m = 27902753 mod 3233=65 



RSA: when does it work? 
•  keys generation 

–  n=pq needs to be very large (e.g. at least 200 
digits) so that both the public and private key 
exponents are large enough. 

–  p and q should come out of a “random” 
process (i.e., not easily guessed). 

–  needs an efficient way to check if such 
generated p and q are indeed primes. 

•  encryption 
–  given large n, e, and any m needs an efficient 

way of computing c = me mod n 
•  decryption 

–  given large n, d, and any c needs an efficient 
way of computing m = cd mod n 

–  given large n, e, should be hard to find d 
–  given large n, e, c, should be hard to find m  



Modular exponentiation  

•  Given n, c, d calculate m = cd mod n 
•  How? 

– divide and conquer: raising powers with 
repeated squaring 

– efficient when using the binary 
representation of d 

– (e.g., d =560 =<1,0,0,0,1,1,0,0,0,0>) 



Modular exponentiation II  

•  Given n, c, d calculate m = cd mod n 
•  procedure computes ci mod n as i is increased by 

doublings, incrementing from 0 to d: 
•  i=0;m=1; let d =<dk,dk-1,....,d0> 
•  for j=k downto 0 

–  i = 2i 
– m=m*m mod n 
–  if dj = 1 

»  i = i+1 
» m=m*c mod n 

•  return m 



Modular exponentiation III  

•  Given n, c, d calculate m = cd mod n 
•  i=0;m=1; let d =<dk,dk-1,....,d0> 
•  for j=k downto 0 

–  i = 2i 
– m=m*m mod n 
–  if dj = 1 

»  i = i+1 
» m=m*c mod n 

•  return m 

•  if n, c, d are k-bits number, total number of 
bit operations is O(k3) 



Primality testing 

•  Given an integer p, is p a prime number? 

•  Wilson’s theorem: 
p is prime if and only if p divides (p-1)!+1 

– is nice 
– but useless for our purpose ... 
(computing (p-1)! +1 and testing if  p divides (p-1)!+1 

become computationally prohibitive for large p) 



Primality testing I 

•  Given an integer p, is p a prime number? 
•  Basic Algorithm: 

 “check whether any integer m from 2 to 
[√p] divides p (skipping even integers). If 
none of them do, p is prime.” 

•  complexity?  
– Θ(√p)  
– exponential in the length of p 



Primality testing II 

•  Given an integer p, is p a prime number? 
•  Randomization to the rescue !! 
•  Pseudoprimes 

– def:  p is a base-a pseudoprime if p is 
composite and ap-1 = 1 mod p 

•  Thm: if p is prime then ap-1 = 1 mod p for 
all 1≤a≤p-1 (from Fermat) 

•  converse is “almost” true 



Primality testing III 

•  Given an integer p, is p a prime number? 
•  randomization to the rescue !! 
•  “pseudo” prime testing: 

– input p: 
– if 2p-1 ≠ 1 mod p  

• then return composite  // definitely 
– else return prime    // we hope ... 



Primality testing IV 
– input p: 
– if 2p-1 ≠ 1 mod p  

• then return composite  // definitely 
– else return prime    // we hope ... 

   will make a mistake only if p is a base-2 
pseudoprime, and this is “rare” ... 
–  only 22 values of p less than 10,000 for which it makes 

a mistake (341, 561, 645 ...) 
–  probability of a mistake for a randomly chosen 1024-bit 

number is  ≤ 10-41 



Primality testing V 
•  A randomized testing 

– input p: 
– choose a random number 2≤a≤p-2 
– if ap-1 ≠ 1 mod p  

• then return composite  // definitely 

– else return prime    // almost surely 



Integer factorization  

•  Given an integer n, decompose it into a 
product of primes. 

•  Unless P=NP, this seems to be a 
computationally hard problem (and a good 
news to the cryptographers) 


