
6.006- Introduction to Algorithms

Lecture 23
Prof. Patrick Jaillet

Outline
•  “Numerics II” - algorithms for

operations on large numbers
•  Today:

–  quick review: irrationals; large
number operations: addition,
multiplication, division

–  cryptography (CLRS 31)
• motivations
•  primality testing
• modular exponentiation
•  integer factorization

 2 3 5 7 11 13 17 19 23 29
 31 37 41 43 47 53 59 61 67 71
 73 79 83 89 97 101 103 107 109 113
 127 131 137 139 149 151 157 163 167 173
 179 181 191 193 197 199 211 223 227 229
 233 239 241 251 257 263 269 271 277 281
 283 293 307 311 313 317 331 337 347 349
 353 359 367 373 379 383 389 397 401 409
 419 421 431 433 439 443 449 457 461 463
 467 479 487 491 499 503 509 521 523 541
 547 557 563 569 571 577 587 593 599 601
 607 613 617 619 631 641 643 647 653 659
 661 673 677 683 691 701 709 719 727 733
 739 743 751 757 761 769 773 787 797 809
 811 821 823 827 829 839 853 857 859 863
 877 881 883 887 907 911 919 929 937 941
 947 953 967 971 977 983 991 997

Computing to lots of digits ... why?

€

h

1

1

√2

1. 414 213 562 373 095
 048 801 688 724 209
 698 078 569 671 875
 376 948 073 176 679 ...

question: pattern?

Computing to lots of digits ... why?

•  geometry problem

– BD =1
– what is AD?

•  question: first non-trivial digits?
(Taylor’s expansion)

=> AD =10-12 + 10-36 + 2.10-60 + 5.10-84

€

h

A

B

C D
1000,000,000,000

1

€

AD = AC −CD = 500,000,000,000 − 500,000,000,0002 −1
€

€

1+ x =1+
1
2
x − 1

8
x 2 +

1
16

x 3 − 5
128

x 4 +

Cryptography

•  long history
•  modern development

– public-key cryptography
•  some designed as early as 1973 – UK – but

classified top-secret and revealed publicly in
1998

• RSA (1978) for “Rivest, Shamir, and
Adleman” is the first algorithm suitable for
signing and encryption – widely used in
electronic commerce protocols

Public-key cryptography

•  key generation
–  public key
–  private key

•  encryption

•  decryption

RSA: key generation

•  choose two prime number p and q
•  compute n=pq
•  compute f(n)=(p-1)(q-1)
•  choose e, 1<e<f(n), and gcd(e,f(n))=1

(e and f(n) are co-prime)
–  e is released as the public key exponent

•  find d=e-1 mod f(n)
–  d is kept as the private key exponent

RSA: encryption

•  Alice transmits her public
key (n,e) to Bob

•  Bob wishes to send a
message “Hello Alice!” to
Alice
–  he turns the message into an

integer m, 0<m<n, using an
agreed upon protocol (a
padding scheme)

–  he computes c = me mod n
–  he transmits c to Alice

RSA: decryption

•  Alice can recover m from c
by using her private key
exponent d as follows:

 m = cd mod n

•  Given m, she can recover the
message “Hello Alice!” by
reversing the padding scheme

RSA: example
•  key generation:

–  choose p = 61 and q = 53
–  compute n=pq=3233
–  compute f(n)=(p-1)(q-1)=3120
–  choose a prime number e not a divisor of

3120, say e =17
–  find d = e-1 mod f(n)=2753
–  the public key is (n,e)=(3233,17)
–  the private key is (n,d)=(3233,2753)

•  encryption: m =65 is encrypted as
c = 6517 mod 3233=2790

•  decryption: c=2790 is decrypted as
m = 27902753 mod 3233=65

RSA: when does it work?
•  keys generation

–  n=pq needs to be very large (e.g. at least 200
digits) so that both the public and private key
exponents are large enough.

–  p and q should come out of a “random”
process (i.e., not easily guessed).

–  needs an efficient way to check if such
generated p and q are indeed primes.

•  encryption
–  given large n, e, and any m needs an efficient

way of computing c = me mod n
•  decryption

–  given large n, d, and any c needs an efficient
way of computing m = cd mod n

–  given large n, e, should be hard to find d
–  given large n, e, c, should be hard to find m

Modular exponentiation

•  Given n, c, d calculate m = cd mod n
•  How?

– divide and conquer: raising powers with
repeated squaring

– efficient when using the binary
representation of d

– (e.g., d =560 =<1,0,0,0,1,1,0,0,0,0>)

Modular exponentiation II

•  Given n, c, d calculate m = cd mod n
•  procedure computes ci mod n as i is increased by

doublings, incrementing from 0 to d:
•  i=0;m=1; let d =<dk,dk-1,....,d0>
•  for j=k downto 0

–  i = 2i
– m=m*m mod n
–  if dj = 1

»  i = i+1
» m=m*c mod n

•  return m

Modular exponentiation III

•  Given n, c, d calculate m = cd mod n
•  i=0;m=1; let d =<dk,dk-1,....,d0>
•  for j=k downto 0

–  i = 2i
– m=m*m mod n
–  if dj = 1

»  i = i+1
» m=m*c mod n

•  return m

•  if n, c, d are k-bits number, total number of
bit operations is O(k3)

Primality testing

•  Given an integer p, is p a prime number?

•  Wilson’s theorem:
p is prime if and only if p divides (p-1)!+1

– is nice
– but useless for our purpose ...
(computing (p-1)! +1 and testing if p divides (p-1)!+1

become computationally prohibitive for large p)

Primality testing I

•  Given an integer p, is p a prime number?
•  Basic Algorithm:

 “check whether any integer m from 2 to
[√p] divides p (skipping even integers). If
none of them do, p is prime.”

•  complexity?
– Θ(√p)
– exponential in the length of p

Primality testing II

•  Given an integer p, is p a prime number?
•  Randomization to the rescue !!
•  Pseudoprimes

– def: p is a base-a pseudoprime if p is
composite and ap-1 = 1 mod p

•  Thm: if p is prime then ap-1 = 1 mod p for
all 1≤a≤p-1 (from Fermat)

•  converse is “almost” true

Primality testing III

•  Given an integer p, is p a prime number?
•  randomization to the rescue !!
•  “pseudo” prime testing:

– input p:
– if 2p-1 ≠ 1 mod p

• then return composite // definitely
– else return prime // we hope ...

Primality testing IV
– input p:
– if 2p-1 ≠ 1 mod p

• then return composite // definitely
– else return prime // we hope ...

 will make a mistake only if p is a base-2
pseudoprime, and this is “rare” ...
–  only 22 values of p less than 10,000 for which it makes

a mistake (341, 561, 645 ...)
–  probability of a mistake for a randomly chosen 1024-bit

number is ≤ 10-41

Primality testing V
•  A randomized testing

– input p:
– choose a random number 2≤a≤p-2
– if ap-1 ≠ 1 mod p

• then return composite // definitely

– else return prime // almost surely

Integer factorization

•  Given an integer n, decompose it into a
product of primes.

•  Unless P=NP, this seems to be a
computationally hard problem (and a good
news to the cryptographers)

